skip to main content
research-article

FlexMolds: automatic design of flexible shells for molding

Published: 05 December 2016 Publication History

Abstract

We present FlexMolds, a novel computational approach to automatically design flexible, reusable molds that, once 3D printed, allow us to physically fabricate, by means of liquid casting, multiple copies of complex shapes with rich surface details and complex topology. The approach to design such flexible molds is based on a greedy bottom-up search of possible cuts over an object, evaluating for each possible cut the feasibility of the resulting mold. We use a dynamic simulation approach to evaluate candidate molds, providing a heuristic to generate forces that are able to open, detach, and remove a complex mold from the object it surrounds. We have tested the approach with a number of objects with nontrivial shapes and topologies.

Supplementary Material

ZIP File (a223-malomo.zip)
Supplemental file.

References

[1]
Bender, J., Müller, M., Otaduy, M. A., and Teschner, M. 2013. Position-based methods for the simulation of solid objects in computer graphics. EUROGRAPHICS 2013 State of the Art Reports.
[2]
Bommes, D., Zimmer, H., and Kobbelt, L. 2009. Mixedinteger quadrangulation. ACM Trans. Graph. 28, 3 (July), 77:1--77:10.
[3]
Bouaziz, S., Martin, S., Liu, T., Kavan, L., and Pauly, M. 2014. Projective dynamics: fusing constraint projections for fast simulation. ACM Transactions on Graphics (TOG) 33, 4, 154.
[4]
Bruckner, T., Oat, Z., and Procopio, R. 2010. Pop sculpture. Watson-Guptill Publications.
[5]
Campen, M., Bommes, D., and Kobbelt, L. 2012. Dual loops meshing: Quality quad layouts on manifolds. ACM Trans. Graph. 31, 4 (July), 110:1--110:11.
[6]
Chakraborty, P., and Reddy, N. V. 2009. Automatic determination of parting directions, parting lines and surfaces for two-piece permanent molds. journal of materials processing technology 209, 5, 2464--2476.
[7]
Chen, D., Sitthi-amorn, P., Lan, J. T., and Matusik, W. 2013. Computing and fabricating multiplanar models. In Computer Graphics Forum, vol. 32, Wiley Online Library, 305--315.
[8]
Chen, X., Zhang, H., Lin, J., Hu, R., Lu, L., Huang, Q., Benes, B., Cohen-Or, D., and Chen, B. 2015. Dapper: decompose-and-pack for 3d printing. ACM Transactions on Graphics (TOG) 34, 6, 213.
[9]
Cignoni, P., Pietroni, N., Malomo, L., and Roberto, S. 2014. Field aligned mesh joinery. ACM Transacion on Graphics. 33, 1, art.11--1.12.
[10]
Cohen-Steiner, D., Alliez, P., and Desbrun, M. 2004. Variational shape approximation. ACM Trans. Graph. 23, 3 (Aug.), 905--914.
[11]
De Garmo, E. P., Black, J. T., and Kohser, R. A. 2011. DeGarmo's materials and processes in manufacturing. John Wiley & Sons.
[12]
Dey, T. K. 1994. A new technique to compute polygonal schema for 2-manifolds with application to null-homotopy detection. In Proceedings of the Tenth Annual Symposium on Computational Geometry, ACM, New York, NY, USA, SCG '94, 277--284.
[13]
Grande, M. A., Porta, L., and Tiberto, D. 2007. Computer simulation of the investment casting process: Widening of the filling step. In The Santa Fe Symposium on Jewelry Manufacturing Technology 2007.
[14]
Grinspun, E., Hirani, A. N., Desbrun, M., and Schröder, P. 2003. Discrete shells. In Proceedings of the 2003 ACM SIGGRAPH/Eurographics symposium on Computer animation, Eurographics Association, 62--67.
[15]
Gu, X., Gortler, S. J., and Hoppe, H. 2002. Geometry images. ACM Trans. Graph. 21, 3 (July), 355--361.
[16]
Herholz, P., Matusik, W., and Alexa, M. 2015. Approximating Free-form Geometry with Height Fields for Manufacturing. Computer Graphics Forum (Proc. of Eurographics) 34, 2, 239--251.
[17]
Hildebrand, K., Bickel, B., and Alexa, M. 2012. crdbrd: Shape fabrication by sliding planar slices. Computer Graphics Forum (Eurographics 2012) 31.
[18]
Hu, R., Li, H., Zhang, H., and Cohen-Or, D. 2014. Approximate pyramidal shape decomposition. ACM Trans. Graph. 33, 6 (Nov.), 213:1--213:12.
[19]
Hwang, Y. K., and Ahuja, N. 1992. Gross motion planning---a survey. ACM Comput. Surv. 24, 3 (Sept.), 219--291.
[20]
Jiménez, P. 2012. Survey on model-based manipulation planning of deformable objects. Robotics and computer-integrated manufacturing 28, 2, 154--163.
[21]
Julius, D., Kraevoy, V., and Sheffer, A. 2005. D-charts: Quasi-developable mesh segmentation. In Computer Graphics Forum, vol. 24, Wiley Online Library, 581--590.
[22]
Keinert, B., Innmann, M., Sänger, M., and Stamminger, M. 2015. Spherical fibonacci mapping. ACM Trans. Graph. 34, 6 (Oct.), 193:1--193:7.
[23]
Lin, A. C., and Quang, N. H. 2014. Automatic generation of mold-piece regions and parting curves for complex cad models in multi-piece mold design. Computer-Aided Design 57, 15--28.
[24]
Liu, L., Wang, C., Shamir, A., and Whiting, E. 2014. 3d printing oriented design: geometry and optimization. In SIGGRAPH Asia 2014 Courses, ACM, 1.
[25]
Luo, L., Baran, I., Rusinkiewicz, S., and Matusik, W. 2012. Chopper: partitioning models into 3d-printable parts. ACM Trans. Graph. 31, 6, 129.
[26]
Levy, B. 2014. Restricted voronoi diagrams for (re)-meshing surfaces and volumes.
[27]
Müller, M., Heidelberger, B., Hennix, M., and Ratcliff, J. 2007. Position based dynamics. Journal of Visual Communication and Image Representation 18, 2, 109--118.
[28]
Müller, M., Stam, J., James, D., and Thürey, N. 2008. Real time physics: class notes. In ACM SIGGRAPH 2008 classes, ACM, 88.
[29]
Myles, A., Pietroni, N., and Zorin, D. 2014. Robust field-aligned global parametrization. ACM Trans. on Graphics - Siggraph 2014 33, 4, Article No. 135.
[30]
Pietroni, N., Tarini, M., and Cignoni, P. 2010. Almost isometric mesh parameterization through abstract domains. IEEE Transaction on Visualization and Computer Graphics 16, 4 (July/August), 621--635.
[31]
Pietroni, N., Puppo, E., Marcias, G., Scopigno, R., and Cignoni, P. 2016. Tracing field-coherent quad layouts. Computer Graphics Forum (Proceedings of Pacific Graphics 2016). In Press.
[32]
Ray, N., Vallet, B., Alonso, L., and Levy, B. 2009. Geometry-aware direction field processing. ACM Trans. Graph. 29, 1 (Dec.), 1:1--1:11.
[33]
Razafindrazaka, F. H., Reitebuch, U., and Polthier, K. 2015. Perfect matching quad layouts for manifold meshes. Computer Graphics Forum (proceedings of EUROGRAPHICS Symposium on Geometry Processing) 34, 5.
[34]
Saha, M., and Isto, P. 2006. Motion planning for robotic manipulation of deformable linear objects. In Robotics and Automation, 2006. ICRA 2006. Proceedings 2006 IEEE International Conference on, IEEE, 2478--2484.
[35]
Schüller, C., Panozzo, D., Grundhöfer, A., Zimmer, H., Sorkine, E., and Sorkine-Hornung, O. 2016. Computational thermoforming. ACM Transactions on Graphics (Proceedings of ACM SIGGRAPH) 35, 4.
[36]
Schwartzburg, Y., and Pauly, M. 2013. Fabrication-aware design with intersecting planar pieces. Computer Graphics Forum (Proceedings of Eurographics 2013) 32, 2, 317--326.
[37]
Shamir, A. 2008. A survey on mesh segmentation techniques. Computer Graphics Forum 27, 6, 1539--1556.
[38]
Sifakis, E., and Barbic, J. 2012. Fem simulation of 3d deformable solids: a practitioner's guide to theory, discretization and model reduction. In ACM SIGGRAPH 2012 Courses, ACM, 20.
[39]
Singh, R. 2010. Three dimensional printing for casting applications: A state of art review and future perspectives. In Advanced Materials Research, vol. 83, Trans Tech Publ, 342--349.
[40]
Skouras, M., Thomaszewski, B., Bickel, B., and Gross, M. 2012. Computational design of rubber balloons. Computer Graphics Forum 31, 2pt4.
[41]
Skouras, M., Thomaszewski, B., Kaufmann, P., Garg, A., Bickel, B., Grinspun, E., and Gross, M. 2014. Designing inflatable structures. ACM Trans on Graphics (Proc. of ACM SIGGRAPH) 33, 4.
[42]
Solomon, J., Vouga, E., Wardetzky, M., and Grinspun, E. 2012. Flexible developable surfaces. In Computer Graphics Forum, vol. 31, Wiley Online Library, 1567--1576.
[43]
Tang, C., Bo, P., Wallner, J., and Pottmann, H. 2016. Interactive design of developable surfaces. ACM Transactions on Graphics (TOG) 35, 2.
[44]
Tarini, M., Puppo, E., Panozzo, D., Pietroni, N., and Cignoni, P. 2011. Simple quad domains for field aligned mesh parametrization. ACM Trans. Graph. 30, 6 (Dec.), 142:1--142:12.
[45]
Umetani, N., Bickel, B., and Matusik, W. 2015. Computational tools for 3d printing. In ACM SIGGRAPH 2015 Courses, ACM, 9.
[46]
Usai, F., Livesu, M., Puppo, E., Tarini, M., and Scateni, R. 2015. Extraction of the quad layout of a triangle mesh guided by its curve skeleton. ACM Trans. Graph. 35, 1 (Dec.), 6:1--6:13.
[47]
Vanek, J., Galicia, J., Benes, B., Měch, R., Carr, N., Stava, O., and Miller, G. 2014. Packmerger: A 3d print volume optimizer. In Computer Graphics Forum, vol. 33, Wiley Online Library, 322--332.
[48]
Wannarumon, S. 2011. Reviews of computer-aided technologies for jewelry design and casting. Naresuan University Engineering Journal 6, 1, 45--56.
[49]
Yao, M., Chen, Z., Luo, L., Wang, R., and Wang, H. 2015. Level-set-based partitioning and packing optimization of a printable model. ACM Transactions on Graphics (TOG) 34, 6, 214.
[50]
Zhang, C., Zhou, X., and Li, C. 2010. Feature extraction from freeform molded parts for moldability analysis. The International Journal of Advanced Manufacturing Technology 48, 1-4, 273--282.

Cited By

View all
  • (2024)Shape Cast: Automating 3D Design for Plaster Molds in Ceramic Slip CastingExtended Abstracts of the CHI Conference on Human Factors in Computing Systems10.1145/3613905.3651020(1-7)Online publication date: 11-May-2024
  • (2024)PackMolds: computational design of packaging molds for thermoformingThe Visual Computer: International Journal of Computer Graphics10.1007/s00371-024-03462-840:7(4689-4700)Online publication date: 1-Jul-2024
  • (2023)VASCO: Volume and Surface Co-Decomposition for Hybrid ManufacturingACM Transactions on Graphics10.1145/361832442:6(1-17)Online publication date: 5-Dec-2023
  • Show More Cited By

Index Terms

  1. FlexMolds: automatic design of flexible shells for molding

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Transactions on Graphics
    ACM Transactions on Graphics  Volume 35, Issue 6
    November 2016
    1045 pages
    ISSN:0730-0301
    EISSN:1557-7368
    DOI:10.1145/2980179
    Issue’s Table of Contents
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 05 December 2016
    Published in TOG Volume 35, Issue 6

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. casting
    2. digital fabrication
    3. modeling

    Qualifiers

    • Research-article

    Funding Sources

    • European Union

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)25
    • Downloads (Last 6 weeks)1
    Reflects downloads up to 03 Mar 2025

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)Shape Cast: Automating 3D Design for Plaster Molds in Ceramic Slip CastingExtended Abstracts of the CHI Conference on Human Factors in Computing Systems10.1145/3613905.3651020(1-7)Online publication date: 11-May-2024
    • (2024)PackMolds: computational design of packaging molds for thermoformingThe Visual Computer: International Journal of Computer Graphics10.1007/s00371-024-03462-840:7(4689-4700)Online publication date: 1-Jul-2024
    • (2023)VASCO: Volume and Surface Co-Decomposition for Hybrid ManufacturingACM Transactions on Graphics10.1145/361832442:6(1-17)Online publication date: 5-Dec-2023
    • (2022)State of the Art in Computational Mould DesignComputer Graphics Forum10.1111/cgf.1458141:6(435-452)Online publication date: 22-Aug-2022
    • (2022)Wearable 3D Machine Knitting: Automatic Generation of Shaped Knit Sheets to Cover Real-World ObjectsIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2021.305610128:9(3180-3192)Online publication date: 1-Sep-2022
    • (2021)Volume decomposition for two-piece rigid castingACM Transactions on Graphics10.1145/3478513.348055540:6(1-14)Online publication date: 10-Dec-2021
    • (2021)Automatic Surface Segmentation for Seamless Fabrication Using 4‐axis Milling MachinesComputer Graphics Forum10.1111/cgf.14262540:2(191-203)Online publication date: 4-Jun-2021
    • (2021)3D Printed Formwork for Concrete: State-of-the-Art, Opportunities, Challenges, and Applications3D Printing and Additive Manufacturing10.1089/3dp.2021.0024Online publication date: 27-Sep-2021
    • (2021)Digital 3D modeling using photogrammetry and 3D printing applied to the restoration of a Hispano-Roman architectural ornamentDigital Applications in Archaeology and Cultural Heritage10.1016/j.daach.2021.e0017920(e00179)Online publication date: Mar-2021
    • (2020)A moving least square reproducing kernel particle method for unified multiphase continuum simulationACM Transactions on Graphics10.1145/3414685.341780939:6(1-15)Online publication date: 27-Nov-2020
    • Show More Cited By

    View Options

    Login options

    Full Access

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Figures

    Tables

    Media

    Share

    Share

    Share this Publication link

    Share on social media