skip to main content
research-article

Efficient rendering of heterogeneous polydisperse granular media

Published: 05 December 2016 Publication History

Abstract

We address the challenge of efficiently rendering massive assemblies of grains within a forward path-tracing framework. Previous approaches exist for accelerating high-order scattering for a limited, and static, set of granular materials, often requiring scene-dependent precomputation. We significantly expand the admissible regime of granular materials by considering heterogeneous and dynamic granular mixtures with spatially varying grain concentrations, pack rates, and sizes. Our method supports both procedurally generated grain assemblies and dynamic assemblies authored in off-the-shelf particle simulation tools. The key to our speedup lies in two complementary aggregate scattering approximations which we introduced to jointly accelerate construction of short and long light paths. For low-order scattering, we accelerate path construction using novel grain scattering distribution functions (GSDF) which aggregate intra-grain light transport while retaining important grain-level structure. For high-order scattering, we extend prior work on shell transport functions (STF) to support dynamic, heterogeneous mixtures of grains with varying sizes. We do this without a scene-dependent precomputation and show how this can also be used to accelerate light transport in arbitrary continuous heterogeneous media. Our multi-scale rendering automatically minimizes the usage of explicit path tracing to only the first grain along a light path, or can avoid it completely, when appropriate, by switching to our aggregate transport approximations. We demonstrate our technique on animated scenes containing heterogeneous mixtures of various types of grains that could not previously be rendered efficiently. We also compare to previous work on a simpler class of granular assemblies, reporting significant computation savings, often yielding higher accuracy results.

Supplementary Material

ZIP File (a168-muller.zip)
Supplemental file.

References

[1]
Ashikhmin, M., Premoze, S., and Shirley, P. S. 2000. A microfacet-based BRDF generator. In Proc. SIGGRAPH, 65--74.
[2]
Chandrasekar, S. 1960. Radiative Transfer. Dover Publications.
[3]
Debevec, P., Hawkins, T., Tchou, C., Duiker, H.-P., Sarokin, W., and Sagar, M. 2000. Acquiring the reflectance field of a human face. In Proc. SIGGRAPH, 145--156.
[4]
d'Eon, E., and Irving, G. 2011. A quantized-diffusion model for rendering translucent materials. ACM TOG 30, 4 (July), 56:1--56:14.
[5]
d'Eon, E., Francois, G., Hill, M., Letteri, J., and Aubry, J.-M. 2011. An energy-conserving hair reflectance model. In Proc. EGSR, Eurographics Association, 1181--1187.
[6]
d'Eon, E., Marschner, S., and Hanika, J. 2013. Importance sampling for physically-based hair fiber models. In SIGGRAPH Asia 2013 Technical Briefs, SA '13, 25:1--25:4.
[7]
Dixmier, M. 1978. Une nouvelle description des empilements aléatoires et des fluides denses. Le Journal de Physique 39, 873--895.
[8]
Dullien, F. A. L. 1991. Porous Media: Fluid Transport and Pore Structure, 2nd ed. Academic Press Inc.
[9]
Habel, R., Christensen, P. H., and Jarosz, W. 2013. Photon beam diffusion: A hybrid monte carlo method for subsurface scattering. Computer Graphics Forum 32, 4 (June).
[10]
Henyey, L. G., and Greenstein, J. L. 1941. Diffuse radiation in the galaxy. The Astrophysical Journal 93, 70--83.
[11]
Hery, C., and Ramamoorthi, R. 2012. Importance sampling of reflection from hair fibers. Journal of Computer Graphics Techniques.
[12]
Jakob, W., Moon, J. T., and Marschner, S. 2009. Capturing hair assemblies fiber by fiber. ACM TOG 28, 5 (Dec.), 164:1--164:9.
[13]
Jakob, W., d'Eon, E., Jakob, O., and Marschner, S. 2014. A comprehensive framework for rendering layered materials. ACM TOG 33, 4 (July), 118:1--118:14.
[14]
Jakob, W., Hašan, M., Yan, L.-Q., Lawrence, J., Ramamoorthi, R., and Marschner, S. 2014. Discrete stochastic microfacet models. ACM TOG 33, 4 (July), 115:1--115:10.
[15]
Jakob, W., 2010. Mitsuba renderer. http://mitsuba-renderer.org.
[16]
Jensen, H. W., Marschner, S. R., Levoy, M., and Hanrahan, P. 2001. A practical model for subsurface light transport. In Proc. SIGGRAPH, 511--518.
[17]
Kajiya, J. T., and Kay, T. L. 1989. Rendering fur with three dimensional textures. In Computer Graphics, 271--280.
[18]
Kajiya, J. T. 1986. The rendering equation. Computer Graphics 20, 143--150.
[19]
Kimmel, B. W., and Baranoski, G. V. G. 2007. A novel approach for simulating light interaction with particulate materials: application to the modeling of sand spectral properties. Optics Express 15, 15 (July), 9755--9777.
[20]
Lafortune, E. P., and Willems, Y. D. 1996. Rendering participating media with bidirectional path tracing. In Proc. EGWR, 91--100.
[21]
Lee, R., and O'Sullivan, C. 2007. Accelerated light propagation through participating media. In Proc. Eurographics / Ieee VGTC Conference on Volume Graphics, 17--23.
[22]
Levoy, M., and Hanrahan, P. M. 1996. Light field rendering. In Proc. SIGGRAPH, 31--42.
[23]
Li, H., Pellacini, F., and Torrance, K. E. 2005. A hybrid Monte Carlo method for accurate and efficient subsurface scattering. In Proc. EGSR, 283--290.
[24]
Loos, B. J., Antani, L., Mitchell, K., Nowrouzezahrai, D., Jarosz, W., and Sloan, P.-P. 2011. Modular radiance transfer. ACM TOG 30, 6 (Dec.).
[25]
Marschner, S. R., Jensen, H. W., Cammarano, M., Worley, S., and Hanrahan, P. 2003. Light scattering from human hair fibers. ACM TOG 22, 3 (July), 780--791.
[26]
Matusik, W., Pfister, H., Brand, M., and McMillan, L. 2003. A data-driven reflectance model. ACM TOG 22, 3 (July), 759--769.
[27]
Meng, J., Papas, M., Habel, R., Dachsbacher, C., Marschner, S., Gross, M., and Jarosz, W. 2015. Multi-scale modeling and rendering of granular materials. ACM TOG 34, 4 (July), 49:1--49:13.
[28]
Moon, J. T., Walter, B., and Marschner, S. R. 2007. Rendering discrete random media using precomputed scattering solutions. In Proc. EGSR, 231--242.
[29]
Neyret, F. 1998. Modeling, animating, and rendering complex scenes using volumetric textures. IEEE Trans. on Visualization and Computer Graphics 4, 1 (Jan./Mar.), 55--70.
[30]
Nicodemus, F. E., Richmond, J. C., Hsia, J. J., Ginsberg, I. W., and Limperis, T. 1992. Geometrical considerations and nomenclature for reflectance. In Radiometry. 94--145.
[31]
Ou, J., Xie, F., Krishnamachari, P., and Pellacini, F. 2012. ISHair: Importance Sampling for Hair Scattering. Computer Graphics Forum 31, 4, 1537--1545.
[32]
Peers, P., vom Berge, K., Matusik, W., Ramamoorthi, R., Lawrence, J., Rusinkiewicz, S., and Dutré, P. 2006. A compact factored representation of heterogeneous subsurface scattering. ACM TOG 25, 3 (July), 746--753.
[33]
Pharr, M., and Hanrahan, P. M. 2000. Monte carlo evaluation of non-linear scattering equations for subsurface reflection. In Proc. SIGGRAPH, 75--84.
[34]
Ramamoorthi, R. 2009. Precomputation-based rendering. Found. Trends. Comput. Graph. Vis. 3, 4 (Apr.), 281--369.
[35]
Sadeghi, I., Muñoz, A., Laven, P., Jarosz, W., Seron, F., Gutierrez, D., and Jensen, H. W. 2012. Physically-based simulation of rainbows. ACM TOG 31, 1 (Feb.), 3:1--3:12.
[36]
Sadeghi, I., Bisker, O., De Deken, J., and Jensen, H. W. 2013. A practical microcylinder appearance model for cloth rendering. ACM TOG 32, 2 (Apr.), 14:1--14:12.
[37]
Schröder, K., Klein, R., and Zinke, A. 2011. A volumetric approach to predictive rendering of fabrics. Computer Graphics Forum 30, 4 (July), 1277--1286.
[38]
Skoge, M., Donev, A., Stillinger, F. H., and Torquato, S. 2006. Packing hyperspheres in high-dimensional Euclidean spaces. Physical Review E 74, 4, 041127.
[39]
Song, C., Wang, P., and Makse, H. A. 2008. A phase diagram for jammed matter. Nature, 7195, 629--632.
[40]
Stam, J. 1995. Multiple scattering as a diffusion process. Proc. EGWR, 41--50.
[41]
Torquato, S., and Lu, B. 1993. Chord-length distribution function for two-phase random media. Physical Review E 47 (Apr.), 2950--2953.
[42]
Torrance, K. E., and Sparrow, E. M. 1967. Theory for off-specular reflection from roughened surfaces. Journal of the Optical Society of America 57, 9 (Sept.), 1105--1112.
[43]
Veach, E., and Guibas, L. J. 1995. Optimally combining sampling techniques for monte carlo rendering. In Proc. SIGGRAPH, 419--428.
[44]
Wei, Y., Ofek, E., Quan, L., and Shum, H.-Y. 2005. Modeling hair from multiple views. ACM TOG 24, 3 (July), 816--820.
[45]
Westin, S. H., Arvo, J. R., and Torrance, K. E. 1992. Predicting reflectance functions from complex surfaces. In Computer Graphics, 255--264.
[46]
Xu, Y.-Q., Chen, Y., Lin, S., Zhong, H., Wu, E., Guo, B., and Shum, H.-Y. 2001. Photorealistic rendering of knitwear using the lumislice. In Proc. SIGGRAPH, 391--398.
[47]
Yan, L.-Q., Hašan, M., Jakob, W., Lawrence, J., Marschner, S., and Ramamoorthi, R. 2014. Rendering glints on high-resolution normal-mapped specular surfaces. ACM TOG 33, 4 (July), 116:1--116:9.
[48]
Yan, L.-Q., Tseng, C.-W., Jensen, H. W., and Ramamoorthi, R. 2015. Physically-accurate fur reflectance: Modeling, measurement and rendering. ACM TOG 34, 6 (Oct.), 185:1--185:13.
[49]
Zhao, S., Hašan, M., Ramamoorthi, R., and Bala, K. 2013. Modular flux transfer: efficient rendering of high-resolution volumes with repeated structures. ACM TOG 32, 4 (July), 131:1--131:12.
[50]
Zhao, S., Ramamoorthi, R., and Bala, K. 2014. High-order similarity relations in radiative transfer. ACM TOG 33, 4 (July), 104:1--104:12.
[51]
Zinke, A., and Weber, A. 2007. Light scattering from filaments. IEEE Transactions on Visualization and Computer Graphics 13, 2, 342--356.

Cited By

View all
  • (2025)Don't Splat your Gaussians: Volumetric Ray-Traced Primitives for Modeling and Rendering Scattering and Emissive MediaACM Transactions on Graphics10.1145/371185344:1(1-17)Online publication date: 3-Feb-2025
  • (2024)Appearance-Preserving Scene Aggregation for Level-of-Detail RenderingACM Transactions on Graphics10.1145/370834344:1(1-23)Online publication date: 19-Dec-2024
  • (2024)Practical Appearance Model for Foundation CosmeticsComputer Graphics Forum10.1111/cgf.1514843:4Online publication date: 24-Jul-2024
  • Show More Cited By

Index Terms

  1. Efficient rendering of heterogeneous polydisperse granular media

      Recommendations

      Comments

      Information & Contributors

      Information

      Published In

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 35, Issue 6
      November 2016
      1045 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/2980179
      Issue’s Table of Contents
      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      Published: 05 December 2016
      Published in TOG Volume 35, Issue 6

      Permissions

      Request permissions for this article.

      Check for updates

      Author Tags

      1. appearance modeling
      2. global illumination
      3. ray tracing

      Qualifiers

      • Research-article

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)29
      • Downloads (Last 6 weeks)2
      Reflects downloads up to 08 Mar 2025

      Other Metrics

      Citations

      Cited By

      View all
      • (2025)Don't Splat your Gaussians: Volumetric Ray-Traced Primitives for Modeling and Rendering Scattering and Emissive MediaACM Transactions on Graphics10.1145/371185344:1(1-17)Online publication date: 3-Feb-2025
      • (2024)Appearance-Preserving Scene Aggregation for Level-of-Detail RenderingACM Transactions on Graphics10.1145/370834344:1(1-23)Online publication date: 19-Dec-2024
      • (2024)Practical Appearance Model for Foundation CosmeticsComputer Graphics Forum10.1111/cgf.1514843:4Online publication date: 24-Jul-2024
      • (2024)Learning subsurface scattering solutions of tightly-packed granular media using optimal transportComputers & Graphics10.1016/j.cag.2024.103895119(103895)Online publication date: Apr-2024
      • (2024)Visual simulation of opal using bond percolation through the weighted Voronoi diagram and the Ewald constructionThe Visual Computer: International Journal of Computer Graphics10.1007/s00371-024-03504-140:7(5005-5016)Online publication date: 1-Jul-2024
      • (2023)Path tracing in Production: The Path of WaterACM SIGGRAPH 2023 Courses10.1145/3587423.3595519(1-66)Online publication date: 24-Jul-2023
      • (2023)Deep Appearance PrefilteringACM Transactions on Graphics10.1145/357032742:2(1-23)Online publication date: 16-Jan-2023
      • (2023)Iridescent Water Droplets Beyond Mie ScatteringComputer Graphics Forum10.1111/cgf.1489342:4Online publication date: 26-Jul-2023
      • (2023)MesoGAN: Generative Neural Reflectance ShellsComputer Graphics Forum10.1111/cgf.1484642:6Online publication date: 26-May-2023
      • (2023)Dynamic Mesh-Aware Radiance Fields2023 IEEE/CVF International Conference on Computer Vision (ICCV)10.1109/ICCV51070.2023.00042(385-396)Online publication date: 1-Oct-2023
      • Show More Cited By

      View Options

      Login options

      Full Access

      View options

      PDF

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      Figures

      Tables

      Media

      Share

      Share

      Share this Publication link

      Share on social media