skip to main content
10.1145/2983310.2985760acmconferencesArticle/Chapter ViewAbstractPublication PagessuiConference Proceedingsconference-collections
research-article

Inducing Body-Transfer Illusions in VR by Providing Brief Phases of Visual-Tactile Stimulation

Published:15 October 2016Publication History

ABSTRACT

Current developments in the area of virtual reality (VR) allow numerous users to experience immersive virtual environments (VEs) in a broad range of application fields. In the same way, some research has shown novel advances in wearable devices to provide vibrotactile feedback which can be combined with low-cost technology for hand tracking and gestures recognition. The combination of these technologies can be used to investigate interesting psychological illusions. For instance, body-transfer illusions, such as the rubber-hand illusion or elongated-arm illusion, have shown that it is possible to give a person the persistent illusion of body transfer after only brief phases of synchronized visual-haptic stimulation. The motivation of this paper is to induce such perceptual illusions by combining VR, vibrotactile and tracking technologies, offering an interesting way to create new spatial interaction experiences centered on the senses of sight and touch. We present a technology framework that includes a pair of self-made gloves featuring vibrotactile feedback that can be synchronized with audio-visual stimulation in order to reproduce body-transfer illusions in VR. We present in detail the implementation of the framework and show that the proposed technology setup is able to induce the elongated-arm illusion providing automatic tactile stimuli, instead of the traditional approach based on manually synchronized stimulation.

Skip Supplemental Material Section

Supplemental Material

suifp0176-file3.mp4

mp4

96.2 MB

p61-ariza.mp4

mp4

286.3 MB

References

  1. M. Achibet, A. Girard, A. Talvas, M. Marchal, and A. Lécuyer. Elastic-arm: Human-scale passive haptic feedback for augmenting interaction and perception in virtual environments. In IEEE Virtual Reality (VR), pages 63--68, March 2015.Google ScholarGoogle ScholarCross RefCross Ref
  2. O. Ariza, P. Lubos, F. Steinicke, and G. Bruder. Ring-shaped haptic device with vibrotactile feedback patterns to support natural spatial interaction. In Proceedings of the 25th International Conference on Artificial Reality and Telexistence and 20th Eurographics Symposium on Virtual Environments, ICAT - EGVE '15, pages 175--181, Aire-la-Ville, Switzerland, Switzerland, 2015. Eurographics Association. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. K. C. Armel and V. S. Ramachandran. Projecting sensations to external objects: evidence from skin conductance response. Proceedings of the Royal Society of London B: Biological Sciences, 270(1523):1499--1506, 2003.Google ScholarGoogle ScholarCross RefCross Ref
  4. M. Botvinick and J. Cohen. Rubber hands 'feel' touch that eyes see. Nature, 391(6669):756--756, Feb. 1998.Google ScholarGoogle ScholarCross RefCross Ref
  5. S. Choi and K. J. Kuchenbecker. Vibrotactile display: Perception, technology, and applications. Proceedings of the IEEE, 101(9):2093--2104, Sept 2013.Google ScholarGoogle ScholarCross RefCross Ref
  6. C. Cruz-Neira, D. J. Sandin, T. A. DeFanti, R. V. Kenyon, and J. C. Hart. The cave: audio visual experience automatic virtual environment. Communications of the ACM, 35(6):64--73, 1992. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. T. Debus, T.-J. Jang, P. Dupont, and R. Howe. Multi-channel vibrotactile display for teleoperated assembly. In Proceedings of the 2002 IEEE International Conference on Robotics and Automation, pages 592--597, 2002.Google ScholarGoogle ScholarCross RefCross Ref
  8. H. H. Ehrsson, C. Spence, and R. E. Passingham. That's my hand! activity in premotor cortex reflects feeling of ownership of a limb. Science, 305(5685):875--877, 2004.Google ScholarGoogle ScholarCross RefCross Ref
  9. E. Giannopoulos, A. Pomés, and M. Slater. Touching the void: exploring virtual objects through a vibrotactile glove. The International Journal of Virtual Reality, 11(2):19--24, 2012.Google ScholarGoogle ScholarCross RefCross Ref
  10. M. S. A. Graziano. Where is my arm? The relative role of vision and proprioception in the neuronal representation of limb position. Proceedings of the National Academy of Sciences of the USA of America, 96(18):10418--10421, Aug. 1999.Google ScholarGoogle ScholarCross RefCross Ref
  11. C. Heeter. Reflections on real presence by a virtual person. Presence: Teleoperators and Virtual Environments, 12(4):335--345, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. A. Hein and M. Brell. contact - a vibrotactile display for computer aided surgery. In Second Joint EuroHaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems (WHC'07), pages 531--536, March 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. J. Hummel, J. Dodiya, L. Eckardt, R. Wolff, A. Gerndt, and T. Kuhlen. A lightweight electrotactile feedback device to improve grasping in immersive virtual environments. In Proceedings of IEEE Virtual Reality Conference, 2016.Google ScholarGoogle Scholar
  14. A. Israr and I. Poupyrev. Tactile brush: Drawing on skin with a tactile grid display. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI '11, pages 2019--2028, New York, NY, USA, 2011. ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. C. Jay, M. Glencross, and R. Hubbold. Modeling the effects of delayed haptic and visual feedback in a collaborative virtual environment. ACM Transaction Computer-Human Interaction, 14(2):8, Aug. 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. K. Kilteni, J.-M. Normand, M. V. Sanchez-Vives, and M. Slater. Extending body space in immersive virtual reality: A very long arm illusion. PLoS ONE, 7(7):1--15, 07 2012.Google ScholarGoogle ScholarCross RefCross Ref
  17. J. Kramer. Force feedback and textures simulating interface device, Feb. 2 1993. US Patent 5,184,319.Google ScholarGoogle Scholar
  18. S. Kuroki, H. Kajimoto, H. Nii, N. Kawakami, and S. Tachi. Proposal for tactile sense presentation that combines electrical and mechanical stimulus. In WHC, pages 121--126, March 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. J. Martínez, A. García, M. Oliver, J. P. Molina, and P. González. Identifying virtual 3d geometric shapes with a vibrotactile glove. IEEE Computer Graphics and Applications, 36(1):42--51, Jan 2016.Google ScholarGoogle ScholarCross RefCross Ref
  20. J. Martínez, D. Martínez, J. P. Molina, P. González, and A. García. Comparison of force and vibrotactile feedback with direct stimulation for texture recognition. In Cyberworlds (CW), International Conference on, pages 62--68, Oct 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Y. Muramatsu, M. Niitsuma, and T. Thomessen. Perception of tactile sensation using vibrotactile glove interface. In Cognitive Infocommunications (CogInfoCom), 2012 IEEE 3rd International Conference on, pages 621--626, Dec 2012.Google ScholarGoogle ScholarCross RefCross Ref
  22. V. I. Petkova and H. H. Ehrsson. If I Were You: Perceptual Illusion of Body Swapping. PLoS ONE, 3(12):1--9, 12 2008.Google ScholarGoogle ScholarCross RefCross Ref
  23. K. Robert, L. Norman, B. Kevin, and L. Michael. Simulator Sickness Questionnaire: An Enhanced Method for Quantifying Simulator Sickness. The International Journal of Aviation Psychology, pages 203--220, 1993.Google ScholarGoogle Scholar
  24. Z. Shi, H. Zou, M. Rank, L. Chen, S. Hirche, and H. J. Muller. Effects of packet loss and latency on the temporal discrimination of visual-haptic events. IEEE Transactions on Haptics, pages 28--36, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. M. Slater and A. Steed. A Virtual Presence Counter. Presence: Teleoperators and Virtual Environments, 9(5):413--434, Oct. 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. M. Slater, A. Steed, J. McCarthy, and F. Maringelli. The Influence of Body Movement on Subjective Presence in Virtual Environments. Human Factors and Ergonomics Society, 40(3):469--477, Sept. 1998.Google ScholarGoogle ScholarCross RefCross Ref
  27. M. Solazzi, A. Frisoli, and M. Bergamasco. Design of a novel finger haptic interface for contact and orientation display. In IEEE Haptics Symposium, pages 129--132, March 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. W. W. Somers and M. J. Hamilton. Estimation of the stereoscopic threshold utilizing perceived depth. Ophthalmic and Physiological Optics, 4(3):245--250, 1984.Google ScholarGoogle ScholarCross RefCross Ref
  29. B. Spanlang, J.-M. Normand, D. Borland, K. Kilteni, E. Giannopoulos, A. Pomés, M. González-Franco, D. Pérez-Marcos, J. Arroyo-Palacios, X. N. Muncunill, and M. Slater. How to build an embodiment lab: Achieving body representation illusions in virtual reality. Frontiers in Robotics and AI, 1(9), 2014.Google ScholarGoogle Scholar
  30. B. Stark, T. Carlstedt, R. G. Hallin, and M. Risling. Distribution of human pacinian corpuscles in the hand: A cadaver study. Journal of Hand Surgery (British and European Volume), 23(3):370--372, 1998.Google ScholarGoogle Scholar
  31. M. Tsakiris and P. Haggard. The rubber hand illusion revisited: visuotactile integration and self-attribution. Journal of experimental psychology. Human perception and performance, 31(1):80--91, Feb. 2005.Google ScholarGoogle Scholar
  32. M. Usoh, E. Catena, S. Arman, and M. Slater. Using presence questionnaires in reality. Presence: Teleoperation Virtual Environments, pages 497--503, 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Y. Yuan and A. Steed. Is the rubber hand illusion induced by immersive virtual reality? In 2010 IEEE Virtual Reality Conference (VR), pages 95--102, March 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Inducing Body-Transfer Illusions in VR by Providing Brief Phases of Visual-Tactile Stimulation

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in
          • Published in

            cover image ACM Conferences
            SUI '16: Proceedings of the 2016 Symposium on Spatial User Interaction
            October 2016
            236 pages
            ISBN:9781450340687
            DOI:10.1145/2983310

            Copyright © 2016 ACM

            Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

            Publisher

            Association for Computing Machinery

            New York, NY, United States

            Publication History

            • Published: 15 October 2016

            Permissions

            Request permissions about this article.

            Request Permissions

            Check for updates

            Qualifiers

            • research-article

            Acceptance Rates

            SUI '16 Paper Acceptance Rate20of77submissions,26%Overall Acceptance Rate86of279submissions,31%

            Upcoming Conference

            SUI '24
            ACM Symposium on Spatial User Interaction
            October 7 - 8, 2024
            Trier , Germany

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader