skip to main content
10.1145/2987550.2987564acmconferencesArticle/Chapter ViewAbstractPublication PagesmodConference Proceedingsconference-collections
research-article

Optasia: A Relational Platform for Efficient Large-Scale Video Analytics

Published: 05 October 2016 Publication History

Abstract

Camera deployments are ubiquitous, but existing methods to analyze video feeds do not scale and are error-prone. We describe Optasia, a dataflow system that employs relational query optimization to efficiently process queries on video feeds from many cameras. Key gains of Optasia result from modularizing vision pipelines in such a manner that relational query optimization can be applied. Specifically, Optasia can (i) de-duplicate the work of common modules, (ii) auto-parallelize the query plans based on the video input size, number of cameras and operation complexity, (iii) offers chunk-level parallelism that allows multiple tasks to process the feed of a single camera. Evaluation on traffic videos from a large city on complex vision queries shows high accuracy with many fold improvements in query completion time and resource usage relative to existing systems.

References

[1]
Operation virtual shield: a homeland security grid established in chicago. http://bit.ly/2bb33F7.
[2]
OpenALPR: Open automatic license plate recognition library. https://github.com/openalpr/openalpr.
[3]
Seattle department of transportation live traffic videos. http://web6.seattle.gov/travelers/.
[4]
Amazon Elastic Compute Cloud (Amazon EC2). http://aws.amazon.com/ec2/.
[5]
Defense advanced research projects agency information systems office's three-year program on video surveillance and monitoring technology. http://bit.ly/2bQIixs.
[6]
ImageNET. http://www.image-net.org.
[7]
Microsoft COCO: Common objects in context. http://mscoco.org.
[8]
Netflix tech blog: High quality video encoding at scale. http://nflx.it/2bdMceJ.
[9]
Earthcam live feeds from NYC. http://bit.ly/1SZgZQv.
[10]
OpenCV. http://opencv.org/.
[11]
Video surveillance storage: How much is enough? http://bit.ly/2bb3rDR.
[12]
TPC-DS Benchmark. http://bit.ly/1J6uDap.
[13]
Trafficland. http://www.trafficland.com.
[14]
Supply of video management software remains fragmented. http://bit.ly/1TiDnVr.
[15]
Vehicle counting based on blob detection. http://bit.ly/2bdjNWA.
[16]
Hadoop YARN Project. http://bit.ly/1iS8xvP.
[17]
Youtube: Video encoding settings. http://bit.ly/2bygQ8m.
[18]
M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, et al. Tensorflow: Large-scale machine learning on heterogeneous systems. http://www.tensorflow.org.
[19]
ACLU. Police body-mounted cameras: With right policies in place, a win for all. http://bit.ly/1RBzI1i.
[20]
S. Agarwal, S. Kandula, N. Burno, M.-C. Wu, I. Stoica, and J. Zhou. Re-optimizing data parallel computing. In NSDI, 2012.
[21]
G. Ananthanarayanan, S. Kandula, A. Greenberg, I. Stoica, Y. Lu, B. Saha, and E. Harris. Reining in the outliers in map-reduce clusters using mantri. In OSDI, 2010.
[22]
M. Armbrust, R. S. Xin, C. Lian, Y. Huai, D. Liu, J. K. Bradley, X. Meng, T. Kaftan, M. J. Franklin, and A. Ghodsi. Spark sql: Relational data processing in spark. In SIGMOD, 2015.
[23]
Avigilon. Video surveillance solutions. http://bit.ly/21EIIr3.
[24]
D. Bradley and G. Roth. Adaptive thresholding using the integral image. Journal of graphics, gpu, and game tools, 12 (2):13--21, 2007.
[25]
L. Breiman. Random forests. Machine learning, 45(1):5--32, 2001.
[26]
N. Buch, S. Velastin, and J. Orwell. A review of computer vision techniques for the analysis of urban traffic. IEEE T. on Intelligent Transportation Systems, 12(3):920--939, 2011.
[27]
R. Chaiken, B. Jenkins, P.-Å. Larson, B. Ramsey, D. Shakib, S. Weaver, and J. Zhou. Scope: easy and efficient parallel processing of massive data sets. VLDB Endowment, 1(2): 1265--1276, 2008.
[28]
C. Chambers, A. Raniwala, F. Perry, S. Adams, R. R. Henry, R. Bradshaw, and N. Weizenbaum. Flumejava: easy, efficient data-parallel pipelines. In PLDI, 2010.
[29]
B. Chandramouli, J. Goldstein, M. Barnett, R. DeLine, D. Fisher, J. C. Platt, J. F. Terwilliger, and J. Wernsing. Trill: A high-performance incremental query processor for diverse analytics. VLDB Endowment, 8(4):401--412, 2014.
[30]
Y. Cheng. Mean shift, mode seeking, and clustering. IEEE T. on Pattern Analysis and Machine Intelligence, 17(8):790--799, 1995.
[31]
T. Condie, N. Conway, P. Alvaro, J. M. Hellerstein, K. Elmeleegy, and R. Sears. Mapreduce online. In NSDI, 2010.
[32]
N. Cristianini and J. Shawe-Taylor. An Introduction to Support Vector Machines and Other Kernel-based Learning Methods. 2000.
[33]
N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In CVPR., 2005.
[34]
K. Davidson. A flow travel time relationship for use in transportation planning. In Australian Road Research Board Conference, 1966, Sydney, 1966.
[35]
J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on large clusters. In OSDI, 2004.
[36]
A. Elgammal, D. Harwood, and L. Davis. Non-parametric model for background subtraction. In ECCV. 2000.
[37]
M. Everingham, L. Van Gool, C. Williams, J. Winn, and A. Zisserman. The pascal visual object classes challenge. IJCV, 88(2):303--338, 2010.
[38]
R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin. Liblinear: A library for large linear classification. JMLR, 9:1871--1874, 2008.
[39]
M. A. Fischler and R. C. Bolles. Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Communications of the ACM, 24 (6):381--395, 1981.
[40]
G. Graefe. The cascades framework for query optimization. IEEE Data Eng. Bull., 18(3):19--29, 1995.
[41]
R. M. Haralick and L. G. Shapiro. Image segmentation techniques. Computer vision, graphics, and image processing, 29 (1):100--132, 1985.
[42]
S. P. Hoogendoorn and P. H. Bovy. State-of-the-art of vehicular traffic flow modelling. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 215(4):283--303, 2001.
[43]
IIHS. Communities using red light cameras and speed cameras. http://bit.ly/2bb3OOA.
[44]
M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. Dryad: distributed data-parallel programs from sequential building blocks. In EuroSys, 2007.
[45]
D. Jiang, B. Ooi, L. Shi, and S. Wu. The performance of mapreduce: An in-depth study. VLDB Endow., 3(1), 2010.
[46]
J. Juang and Y.-C. Huang. Intelligent Technologies and Engineering Systems. 2013.
[47]
P. KaewTraKulPong and R. Bowden. An improved adaptive background mixture model for real-time tracking with shadow detection. In Video-based surveillance systems, pages 135--144. Springer, 2002.
[48]
S. Liao, Y. Hu, X. Zhu, and S. Z. Li. Person re-identification by local maximal occurrence representation and metric learning. In CVPR, 2015.
[49]
S. Liu, J. Pu, Q. Luo, H. Qu, L. Ni, and R. Krishnan. Vait: A visual analytics system for metropolitan transportation. IEEE T. on Intelligent Transportation Systems, 2013.
[50]
D. G. Lowe. Object recognition from local scale-invariant features. In ICCV, 1999.
[51]
B. D. Lucas and T. Kanade. An iterative image registration technique with an application to stereo vision. In IJCAI, 1981.
[52]
T. Malisiewicz, A. Gupta, and A. A. Efros. Ensemble of exemplar-svms for object detection and beyond. In ICCV, 2011.
[53]
A. D. May. Traffic flow fundamentals. 1990.
[54]
P. McGowen and M. Sanderson. Accuracy of pneumatic road tube counters. In Proceedings of the 2011 Western District Annual Meeting, Anchorage, AK, USA, 2011.
[55]
Microsoft. An Overview of Windows Azure. http://bit.ly/1Qo6yUg.
[56]
L. E. Y. Mimbela and L. A. Klein. Summary of vehicle detection and surveillance technologies used in intelligent transportation systems. http://bit.ly/2bEZsgW.
[57]
C. Olston et al. Pig Latin: A Not-So-Foreign Language for Data Processing. In SIGMOD, 2008.
[58]
Omnicast. Video Management Software. http://bit.ly/2bIKnYK.
[59]
R. Pike, S. Dorward, R. Griesemer, and S. Quinlan. Interpreting the data: Parallel analysis with sawzall. Scientific Prog., 2003.
[60]
Pro-Vigil. Video surveillance. http://pro-vigil.com/.
[61]
R. Ramakrishnan and J. Gehrke. Database management systems. 2000.
[62]
P. Remagnino. Video-Based Surveillance Systems: Computer Vision and Distributed Processing. 2001.
[63]
P. Roy, S. Seshadri, S. Sudarshan, and S. Bhobe. Efficient and extensible algorithms for multi query optimization. In SIGMOD, 2000.
[64]
M. Satyanarayanan. Mobile computing: The next decade. SIGMOBILE Mob. Comput. Commun. Rev., 2011.
[65]
J. Shi and C. Tomasi. Good features to track. In CVPR, 1994.
[66]
A. Thusoo et al. Hive: A Warehousing Solution Over A Map-Reduce Framework. VLDB Endow., 2009.
[67]
B. Tian, B. Morris, M. Tang, Y. Liu, Y. Yao, C. Gou, D. Shen, and S. Tang. Hierarchical and networked vehicle surveillance in its: A survey. IEEE T. on Intelligent Transportation Systems, 16(2):557--580, 2015.
[68]
Y.-l. Tian, L. Brown, A. Hampapur, M. Lu, A. Senior, and C.-f. Shu. Ibm smart surveillance system (s3): Event based video surveillance system with an open and extensible framework. Mach. Vision Appl., 19(5-6):315--327, 2008.
[69]
H. Vceraraghavan, O. Masoud, and N. Papanikolopoulos. Vision-based monitoring of intersections. In IEEE International Conference on Intelligent Transportation Systems, pages 7--12, 2002.
[70]
X. Wang, X. Ma, and W. E. L. Grimson. Unsupervised activity perception in crowded and complicated scenes using hierarchical bayesian models. IEEE Transactions on PAMI, 31(3):539--555, 2009.
[71]
S. Yeung, O. Russakovsky, G. Mori, and L. Fei-Fei. End-to-end learning of action detection from frame glimpses in videos. In CVPR, 2016.
[72]
Y. Yu, M. Isard, D. Fetterly, M. Budiu, U. Erlingsson, P. K. Gunda, and J. Currey. Dryadlinq: a system for general-purpose distributed data-parallel computing using a high-level language. In OSDI, 2008.
[73]
G. Yuan, X. Zhang, Q. Yao, and K. Wang. Hierarchical and modular surveillance systems in its. IEEE Intelligent Systems, 26(5):10--15, 2011.
[74]
M. Zaharia, T. Das, H. Li, S. Shenker, and I. Stoica. Discretized streams: an efficient and fault-tolerant model for stream processing on large clusters. In HotCloud, 2012.
[75]
J. Zhou, N. Bruno, and W. Lin. Advanced partitioning techniques for massively distributed computation. In SIGMOD, 2012.
[76]
J. Zhou, N. Bruno, M.-C. Wu, P.-A. Larson, R. Chaiken, and D. Shakib. Scope: parallel databases meet mapreduce. VLDB Endowment, 21(5):611--636, 2012.
[77]
Z. Zivkovic. Improved adaptive gaussian mixture model for background subtraction. In ICPR, 2004.
[78]
Z. Zivkovic and F. van der Heijden. Efficient adaptive density estimation per image pixel for the task of background subtraction. Pattern recognition letters, 27(7):773--780, 2006.

Cited By

View all
  • (2024)MadEyeProceedings of the 21st USENIX Symposium on Networked Systems Design and Implementation10.5555/3691825.3691856(549-568)Online publication date: 16-Apr-2024
  • (2024)AI-Driven QoS-Aware Scheduling for Serverless Video Analytics at the EdgeInformation10.3390/info1508048015:8(480)Online publication date: 13-Aug-2024
  • (2024)Optimizing Video Selection LIMIT Queries with Commonsense KnowledgeProceedings of the VLDB Endowment10.14778/3654621.365463917:7(1751-1764)Online publication date: 1-Mar-2024
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
SoCC '16: Proceedings of the Seventh ACM Symposium on Cloud Computing
October 2016
534 pages
ISBN:9781450345255
DOI:10.1145/2987550
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 05 October 2016

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Video analytics
  2. dataflow engines
  3. parallel systems
  4. query optimization
  5. relational languages

Qualifiers

  • Research-article
  • Research
  • Refereed limited

Conference

SoCC '16
Sponsor:
SoCC '16: ACM Symposium on Cloud Computing
October 5 - 7, 2016
CA, Santa Clara, USA

Acceptance Rates

SoCC '16 Paper Acceptance Rate 38 of 151 submissions, 25%;
Overall Acceptance Rate 169 of 722 submissions, 23%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)38
  • Downloads (Last 6 weeks)3
Reflects downloads up to 05 Mar 2025

Other Metrics

Citations

Cited By

View all
  • (2024)MadEyeProceedings of the 21st USENIX Symposium on Networked Systems Design and Implementation10.5555/3691825.3691856(549-568)Online publication date: 16-Apr-2024
  • (2024)AI-Driven QoS-Aware Scheduling for Serverless Video Analytics at the EdgeInformation10.3390/info1508048015:8(480)Online publication date: 13-Aug-2024
  • (2024)Optimizing Video Selection LIMIT Queries with Commonsense KnowledgeProceedings of the VLDB Endowment10.14778/3654621.365463917:7(1751-1764)Online publication date: 1-Mar-2024
  • (2024)A Liquidity Analysis System for Large-scale Video Streams in the OilfieldACM Transactions on Sensor Networks10.1145/364922220:3(1-22)Online publication date: 13-Apr-2024
  • (2023)TVM: A Tile-based Video Management FrameworkProceedings of the VLDB Endowment10.14778/3636218.363622417:4(671-684)Online publication date: 1-Dec-2023
  • (2023)Extract-Transform-Load for Video StreamsProceedings of the VLDB Endowment10.14778/3598581.359860016:9(2302-2315)Online publication date: 1-May-2023
  • (2023)Serving and Optimizing Machine Learning Workflows on Heterogeneous InfrastructuresProceedings of the VLDB Endowment10.14778/3570690.357069216:3(406-419)Online publication date: 23-Jan-2023
  • (2022)Demonstration of accelerating machine learning inference queries with correlative proxy modelsProceedings of the VLDB Endowment10.14778/3554821.355488715:12(3734-3737)Online publication date: 1-Aug-2022
  • (2022)Towards causal physical error discovery in video analytics systemsProceedings of the Workshop on Human-In-the-Loop Data Analytics10.1145/3546930.3547495(1-6)Online publication date: 12-Jun-2022
  • (2022)Controlled Intentional Degradation in Analytical Video SystemsProceedings of the 2022 International Conference on Management of Data10.1145/3514221.3517899(2105-2119)Online publication date: 10-Jun-2022
  • Show More Cited By

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media