skip to main content
10.1145/3003733.3003782acmotherconferencesArticle/Chapter ViewAbstractPublication PagespciConference Proceedingsconference-collections
research-article

Performance Evaluation of Batch Encodings in HEVC Using Slice Level Parallelism

Authors Info & Claims
Published:10 November 2016Publication History

ABSTRACT

HEVC has emerged as the new video standard to replace H.264/AVC. Although the new standard is able to achieve significantly higher compression ratios compared to the older one, it entails high computational demands. To alleviate the problem, parallelism opportunities are offered by the standard at different levels namely, slice, tile and wave front. In this paper we evaluate the performance of slice level parallelism in HEVC encoding. Although significant previous work exists on slice parallelization, particularly for H.264/AVC, usually the experimental evaluation was limited to characterizing the performance when encoding one sequence at a time. Our focus is to evaluate slice parallelism when a batch of encoding jobs is submitted to the system, with CPU core requirements potentially exceeding the available resources.

References

  1. Aaron, A. and Ronca, D. (2015). High quality video encoding at scale. The Netflix Tech Blog, available at: http://techblog.netflix.com/2015/12/high-quality-video-encoding-at-scale.htmlGoogle ScholarGoogle Scholar
  2. Ahn, Y.-J., Hwang, T.-J., Sim, D.-G., and Han, W.-J. 2014. Implementation of Fast HEVC Encoder Based on SIMD and Data-Level Parallelism. EURASIP J. of Image and Video Processing, 16, 2014.Google ScholarGoogle Scholar
  3. Anagnostopoulos, C.N.E., Anagnostopoulos, I.E., Loumos, V., and Kayafas, E. 2006. A License Plate-Recognition Algorithm for Intelligent Transportation System Applications. IEEE Trans. Intelligent Transportation Systems, 7, 3, 377--392. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Assimakis, N., Adam, M., Koziri, M., Voliotis, S., and Asimakis, K. 2013. Optimal Decentralized Kalman Filter and Lainiotis Filter. Digital Signal Processing, 23, 1, 442--452. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Bar-Shalom, Y., Willet, P.K., and Tian, X. 2011. Tracking and Data Fusion: A Handbook of Algorithms. YBS Publishing. ISBN=9780964831278.Google ScholarGoogle Scholar
  6. Bitmovin Inc., available at: https://bitmovin.com/Google ScholarGoogle Scholar
  7. Bossen, F., Bross, B., Sühring, K., and Flynn, D. 2012. HEVC Complexity and Implementation Analysis. IEEE Trans. Circuits and Systems for Video Technology, 22, 12, 1685--1696. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Chi, C.C., Mesa, M.A., Juurlink, B., Clare, G., Henry, F., Pateux, S., and Schierl, T. 2012. Parallel Scalability and Efficiency of HEVC Parallelization Approaches. IEEE Trans. Circuits and Systems for Video Technology, 22, 12, 1827--1838. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Cisco Systems Inc. Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update, 2015-2020 (White Paper), available at: http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/mobile-white-paper-c11-520862.html.Google ScholarGoogle Scholar
  10. Franche, J.-F. and Coulombe, S. 2012. A Multi-Frame and Multi-Slice H.264 Parallel Video Encoding Approach with Simultaneous Encoding of Prediction Frames. In Proceedings of the Int. Conf. Consumer Electronics, Communications and Networks (CECNet 2012), 3034--3038.Google ScholarGoogle Scholar
  11. Huang, Y.-S. and Chieu, B.-C. 2016.A Video Decoding Optimization for Heterogeneous Dual-Core Platforms Architecture. Multimedia Tools Appl., 75, 1, 627--646. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. HM 16.7 reference software, available at: http://hevc.hhi.fraunhofer.deGoogle ScholarGoogle Scholar
  13. Hsieh, J.-H. and Tian-Sheuan Chang, T.-S. 2013. Algorithm and Architecture Design of Bandwidth-Oriented Motion Estimation for Real-Time Mobile Video Applications. IEEE Trans. VLSI Syst., 21, 1, 33--42. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Jung, B. and Jeon, B. 2008. Adaptive Slice-Level Parallelism for H.264/AVC Encoding Using Pre Macroblock Mode Selection. J. Visual Communication and Image Representation, 19, 8, 558--572. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Koivula, A., Viitanen, M., Vanne, J., Hämäläinen, T.D., and Fasnacht, L. 2015. Parallelization of Kvazaar HEVC Intra Encoder for Multi-Core Processors. In Proceedings of the IEEE Workshop Signal Processing Systems, SiPS, 1--6.Google ScholarGoogle Scholar
  16. Koziri, M., Dadaliaris, A. N., Stamoulis, G. I., and Katsavounidis, I. 2007. A Novel Low-Power Motion Estimation Design for H.264. IEEE Int. Conf. on Application-specific Systems, Architectures and Processors, ASAP, 247--252.Google ScholarGoogle Scholar
  17. Koziri, M., Papadopoulos, P., Tziritas, N., Dadaliaris, N. A., Loukopoulos, T., and Khan, S.U. 2016. Slice-Based Parallelization in HEVC Encoding: Realizing the Potential through Efficient Load Balancing. IEEE Workshop on Multimedia Signal Processing (MMSP 2016). To appear.Google ScholarGoogle Scholar
  18. Koziri, M., Zacharis, D., Katsavounidis, I., and Bellas, N. 2011. Implementation of the AVS Video Decoder on a Heterogeneous Dual-Core SIMD Processor. IEEE Trans. Consumer Electronics, 57, 2, 673--681.Google ScholarGoogle ScholarCross RefCross Ref
  19. Misra, K.M., Segall, C.A., Horowitz, M., Xu, S., Fuldseth, A., and Zhou, M. 2013. An Overview of Tiles in HEVC. IEEE J. Selected Topics in Signal Processing, 7, 6, 969--977.Google ScholarGoogle ScholarCross RefCross Ref
  20. Monteiro, E., Vizzotto, B.B., Diniz, C.M., Maule, M., Zatt, B., and Bampi, S. 2014. Parallelization of Full Search Motion Estimation Algorithm for Parallel and Distributed Platforms. Int. J. of Parallel Programming, 42, 2, 239--264. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Owaida, M., Koziri, M., Katsavounidis, I., and Stamoulis, G.I. 2009. A high performance and low power hardware architecture for the transform & quantization stages in H.264. In Proceedings of the IEEE Int. Conf. on Multimedia and Expo, ICME, 1102--1105. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Piñol, P., Gomis, H., Granado, O.L. and Malumbres, M.P. 2015. Slice-Based Parallel Approach for HEVC Encoder. The J. of Supercomputing, 71, 5, 1882--1892. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Pourazad, M.T., Doutre, C., Azimi, M., and Nasiopoulos, P. 2012. HEVC: The New Gold Standard for video Compression: How Does HEVC Compare with H.264/AVC?. IEEE Consumer Electronics Magazine, 1, 3, 36--46.Google ScholarGoogle ScholarCross RefCross Ref
  24. Rodríguez, A., González, A., and Malumbres, M. P. 2006. Hierarchical Parallelization of an H.264/AVC Video Encoder. In Proceedings of the Int. Symp. on Parallel Computing in Electrical Eng., PARELEC, 363--368. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Shafique, M., Khan, U.K. M., and Henkel, J. 2014. Power efficient and workload balanced tiling for parallelized high efficiency video coding. IEEE International Conference on Image Processing, 1253--1257.Google ScholarGoogle Scholar
  26. Sullivan, J. G., Ohm, J.-R., Han, W.-J., and Wiegand, T. 2012. Overview of the High Efficiency Video Coding (HEVC) Standard. IEEE Trans. Circuits and Systems for Video Technology, 22, 12, 1649--1668. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Sze, V. and Budagavi, M. 2013. A comparison of CABAC throughput for HEVC/H. 265 VS. AVC/H. 264. In Proceedings of the IEEE Workshop on Signal Processing Systems, SiPS, 165--170.Google ScholarGoogle Scholar
  28. Tziritas, N., Loukopoulos, T., Khan, U. S., and Xu, Z. C. 2015. Distributed Algorithms for the Operator Placement Problem. IEEE Trans. on Computational Social Systems, 2, 4, 182--196.Google ScholarGoogle ScholarCross RefCross Ref
  29. Wang, X., Song, L., Chen, M., and Yang, J.-J. 2013. Paralleling Variable Block Size Motion Estimation of HEVC on Multi-Core CPU plus GPU Platform. In Proceedings of the IEEE Int. Conf. on Image Processing, ICIP, 1836--1839.Google ScholarGoogle Scholar
  30. Wiegand, T., Sullivan, G.J., Bjøntegaard, G., and Luthra, A. 2003. Overview of the H.264/AVC Video Coding Standard. IEEE Trans. Circuits and Systems for Video Technology, 13, 7, 560--576. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Yan, C., Zhang, Y., Dai, F., and Li, L. 2013. Highly Parallel Framework for HEVC Motion Estimation on Many-Core Platform. In Proceedings of the Data Compression Conf., DCC, 63--72. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Zhao, L., Xu, J., Zhou, Y., and Ai, M. 2012. A Dynamic Slice Control Scheme for Slice-Parallel Video Encoding. In Proceedings of the IEEE Int. Conf. on Image Processing, ICIP, 713--716.Google ScholarGoogle Scholar

Recommendations

Comments

Login options

Check if you have access through your login credentials or your institution to get full access on this article.

Sign in
  • Published in

    cover image ACM Other conferences
    PCI '16: Proceedings of the 20th Pan-Hellenic Conference on Informatics
    November 2016
    449 pages
    ISBN:9781450347891
    DOI:10.1145/3003733

    Copyright © 2016 ACM

    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    • Published: 10 November 2016

    Permissions

    Request permissions about this article.

    Request Permissions

    Check for updates

    Qualifiers

    • research-article
    • Research
    • Refereed limited

    Acceptance Rates

    Overall Acceptance Rate190of390submissions,49%

PDF Format

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader