skip to main content
10.1145/3006386.3006393acmotherconferencesArticle/Chapter ViewAbstractPublication PagesgisConference Proceedingsconference-collections
research-article

Big earth observation data analytics: matching requirements to system architectures

Published: 31 October 2016 Publication History

Abstract

Earth observation satellites produce petabytes of geospatial data. To manage large data sets, researchers need stable and efficient solutions that support their analytical tasks. Since the technology for big data handling is evolving rapidly, researchers find it hard to keep up with the new developments. To lower this burden, we argue that researchers should not have to convert their algorithms to specialised environments. Imposing a new API to researchers is counterproductive and slows down progress on big data analytics. This paper assesses the cost of research-friendliness, in a case where the researcher has developed an algorithm in the R language and wants to use the same code for big data analytics. We take an algorithm for remote sensing time series analysis on compare it use on map/reduce and on array database architectures. While the performance of the algorithm for big data sets is similar, organising image data for processing in Hadoop is more complicated and time-consuming than handling images in SciDB. Therefore, the combination of the array database SciDB and the R language offers an adequate support for researchers working on big Earth observation data analytics.

References

[1]
A. Aji, F. Wang, H. Vo, R. Lee, Q. Liu, X. Zhang, and J. Saltz. Hadoop GIS: A high performance spatial data warehousing system over mapreduce. Proc. VLDB Endow., 6(11):1009--1020, 2013.
[2]
P. Baumann, A. Dehmel, P. Furtado, R. Ritsch, and N. Widmann. The multidimensional database system RasDaMan. ACM SIGMOD Record, 27(2):575--577, 1998.
[3]
M. Broich, M. C. Hansen, P. Potapov, B. Adusei, E. Lindquist, and S. V. Stehman. Time-series analysis of multi-resolution optical imagery for quantifying forest cover loss in Sumatra and Kalimantan, Indonesia. International Journal of Applied Earth Observation and Geoinformation, 13(2):277--291, 2011.
[4]
P. G. Brown. Overview of SciDB: Large scale array storage, processing and analysis. In Proceedings of the 2010 ACM SIGMOD International Conference on Management of Data, pages 963--968, New York, NY, USA, 2010. ACM.
[5]
J. Dean and S. Ghemawat. MapReduce: a flexible data processing tool. Communications of the ACM, 53(1):72--77, 2010.
[6]
A. Eldawy and M. F. Mokbel. SpatialHadoop: A MapReduce framework for spatial data. In IEEE 31st International Conference on Data Engineering (ICDE 2015), volume 1, pages 1352--1363, 2015.
[7]
P. Esling and C. Agon. Time-series data mining. ACM Computing Surveys, 45(1):12:1--12:34, 2012.
[8]
M. A. Friedl, D. Sulla-Menashe, B. Tan, A. Schneider, N. Ramankutty, A. Sibley, and X. Huang. MODIS collection 5 global land cover: Algorithm refinements and characterization of new datasets. Remote Sensing of Environment, 114(1):168 -- 182, 2010.
[9]
G. L. Galford, J. F. Mustard, J. Melillo, A. Gendrin, C. C. Cerri, and C. E. Cerri. Wavelet analysis of MODIS time series to detect expansion and intensification of row-crop agriculture in brazil. Remote Sensing of Environment, 112(2):576--587, 2008.
[10]
N. Gorelick. Google Earth Engine. In AGU Fall Meeting Abstracts, volume 1, page 04, 2012.
[11]
J. Gray, D. T. Liu, M. Nieto-Santisteban, A. Szalay, D. J. DeWitt, and G. Heber. Scientific data management in the coming decade. SIGMOD Rec., 34(4):34--41, 2005.
[12]
P. Griffiths, S. van der Linden, T. Kuemmerle, and P. Hostert. A pixel-based Landsat compositing algorithm for large area land cover mapping. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 6(5):2088--2101, 2013.
[13]
M. Hansen, P. Potapov, R. Moore, M. Hancher, S. Turubanova, A. Tyukavina, D. Thau, S. Stehman, S. Goetz, T. Loveland, A. Kommareddy, A. Egorov, L. Chini, C. Justice, and J. Townshend. High-resolution global maps of 21st-century forest cover change. Science (New York, N.Y.), 342(2013):850--3, 2013.
[14]
P. Jönsson and L. Eklundh. Timesat---a program for analyzing time-series of satellite sensor data. Computers & Geosciences, 30(8):833 -- 845, 2004.
[15]
A. Kaptué Tchuenté, J. Roujean, and S. De Jong. Comparison and relative quality assessment of the GLC2000, GLOBCOVER, MODIS and ECOCLIMAP land cover data sets at the african continental scale. International Journal of Applied Earth Observation and Geoinformation, 13(2):207--219, 2011.
[16]
R. E. Kennedy, Z. Yang, and W. B. Cohen. Detecting trends in forest disturbance and recovery using yearly Landsat time series. Remote Sensing of Environment, 114(12):2897--2910, 2010.
[17]
E. Keogh and C. A. Ratanamahatana. Exact indexing of dynamic time warping. Knowledge Information Systems, 7(3):358--386, 2005.
[18]
L. Krcal and S. Ho. A SciDB-based framework for efficient satellite data storage and query based on dynamic atmospheric event trajectory. In 4th ACM SIGSPATIAL International Workshop on Analytics for Big Geospatial Data, Seattle, WA, USA, 2015.
[19]
V. Maus, G. Câmara, R. Cartaxo, A. Sanchez, F. M. Ramos, and G. R. de Queiroz. A time-weighted dynamic time warping method for land-use and land-cover mapping. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9(8):3729 -- 3739, 2016.
[20]
I. McCallum, M. Obersteiner, S. Nilsson, and A. Shvidenko. A spatial comparison of four satellite derived 1km global land cover datasets. International Journal of Applied Earth Observation and Geoinformation, 8(4):246--255, 2006.
[21]
S. Nativi, P. Mazzetti, M. Santoro, F. Papeschi, M. Craglia, and O. Ochiai. Big data challenges in building the Global Earth Observation System of Systems. Environmental Modelling & Software, 68:1--26, 2015.
[22]
F. Petitjean, J. Inglada, and P. Gancarski. Satellite image time series analysis under time warping. IEEE Transactions on Geoscience and Remote Sensing, 50(8):3081--3095, 2012.
[23]
G. Planthaber, M. Stonebraker, and J. Frew. EarthDB: scalable analysis of MODIS data using SciDB. Proceedings of the 1st ACM SIGSPATIAL Workshop on Analytics for Big Geospatial Data - BigSpatial '12, pages 11--19, 2012.
[24]
R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, 2015.
[25]
G. J. Roerink, M. Menenti, and W. Verhoef. Reconstructing cloudfree NDVI composites using Fourier analysis of time series. International Journal of Remote Sensing, 21(9):1911--1917, 2000.
[26]
M. Stonebraker, P. Brown, D. Zhang, and J. Becla. Scidb: A database management system for applications with complex analytics. Computing in Science & Engineering, 15(3):54--62, 2013.
[27]
R. R. Vatsavai, A. Ganguly, V. Chandola, A. Stefanidis, S. Klasky, and S. Shekhar. Spatiotemporal data mining in the era of big spatial data: Algorithms and applications. In Proceedings of the 1st ACM SIGSPATIAL International Workshop on Analytics for Big Geospatial Data, pages 1--10. ACM, 2012.
[28]
J. Verbesselt, R. Hyndman, G. Newnham, and D. Culvenor. Detecting trend and seasonal changes in satellite image time series. Remote Sensing of Environment, 114(1):106--115, 2010.
[29]
X. Zhang, M. A. Friedl, C. B. Schaaf, A. H. Strahler, J. C. Hodges, F. Gao, B. C. Reed, and A. Huete. Monitoring vegetation phenology using modis. Remote Sensing of Environment, 84(3):471 -- 475, 2003.

Cited By

View all
  • (2025)Deep spatio-textural feature driven multi-constraints pool-based active learning model for resource-efficient big earth observationsInternational Journal of Remote Sensing10.1080/01431161.2025.245712846:6(2611-2645)Online publication date: 10-Feb-2025
  • (2024)The EL-BIOS Earth Observation Data Cube for Supporting Biodiversity Monitoring in GreeceRemote Sensing10.3390/rs1620377116:20(3771)Online publication date: 11-Oct-2024
  • (2024)Deep Learning for Satellite Image Time-Series Analysis: A reviewIEEE Geoscience and Remote Sensing Magazine10.1109/MGRS.2024.339301012:3(81-124)Online publication date: Sep-2024
  • Show More Cited By

Index Terms

  1. Big earth observation data analytics: matching requirements to system architectures

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Other conferences
    BigSpatial '16: Proceedings of the 5th ACM SIGSPATIAL International Workshop on Analytics for Big Geospatial Data
    October 2016
    65 pages
    ISBN:9781450345811
    DOI:10.1145/3006386
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 31 October 2016

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. array databases
    2. big data analytics
    3. earth observation

    Qualifiers

    • Research-article

    Funding Sources

    Conference

    SIGSPATIAL'16

    Acceptance Rates

    BigSpatial '16 Paper Acceptance Rate 8 of 14 submissions, 57%;
    Overall Acceptance Rate 32 of 58 submissions, 55%

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)41
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 08 Mar 2025

    Other Metrics

    Citations

    Cited By

    View all
    • (2025)Deep spatio-textural feature driven multi-constraints pool-based active learning model for resource-efficient big earth observationsInternational Journal of Remote Sensing10.1080/01431161.2025.245712846:6(2611-2645)Online publication date: 10-Feb-2025
    • (2024)The EL-BIOS Earth Observation Data Cube for Supporting Biodiversity Monitoring in GreeceRemote Sensing10.3390/rs1620377116:20(3771)Online publication date: 11-Oct-2024
    • (2024)Deep Learning for Satellite Image Time-Series Analysis: A reviewIEEE Geoscience and Remote Sensing Magazine10.1109/MGRS.2024.339301012:3(81-124)Online publication date: Sep-2024
    • (2024)Brazil Data Cube Workflow Engine: a tool for big Earth observation data processingInternational Journal of Digital Earth10.1080/17538947.2024.231309917:1Online publication date: 9-Feb-2024
    • (2024)Land cover and drought risk assessment in Türkiye’s mountain regions using neutrosophic decision support systemEnvironmental Monitoring and Assessment10.1007/s10661-024-13155-3196:11Online publication date: 12-Oct-2024
    • (2024)Raster Big Data Processing Using Spark with GeoTrellisComputing, Communication and Learning10.1007/978-3-031-56998-2_22(260-271)Online publication date: 31-Mar-2024
    • (2023)Google Earth Engine Based Assessment of Seasonal Spatial Distribution of Water Hyacinth in North Bolgoda Lake, Sri Lanka2023 Moratuwa Engineering Research Conference (MERCon)10.1109/MERCon60487.2023.10355426(385-390)Online publication date: 9-Nov-2023
    • (2023)Two-Speed Deep-Learning Ensemble for Classification of Incremental Land-Cover Satellite Image PatchesEarth Systems and Environment10.1007/s41748-023-00343-37:2(525-540)Online publication date: 24-Mar-2023
    • (2022)Optimized Software Tools to Generate Large Spatio-Temporal Data Using the Datacubes Concept: Application to Crop Classification in Cap Bon, TunisiaRemote Sensing10.3390/rs1419501314:19(5013)Online publication date: 8-Oct-2022
    • (2022)Monitoring Complex Integrated Crop–Livestock Systems at Regional Scale in Brazil: A Big Earth Observation Data ApproachRemote Sensing10.3390/rs1407164814:7(1648)Online publication date: 30-Mar-2022
    • Show More Cited By

    View Options

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Figures

    Tables

    Media

    Share

    Share

    Share this Publication link

    Share on social media