skip to main content
10.1145/3018661.3022755acmconferencesArticle/Chapter ViewAbstractPublication PageswsdmConference Proceedingsconference-collections
tutorial

Neural Text Embeddings for Information Retrieval

Published:02 February 2017Publication History

ABSTRACT

In the last few years, neural representation learning approaches have achieved very good performance on many natural language processing tasks, such as language modelling and machine translation. This suggests that neural models will also achieve good performance on information retrieval (IR) tasks, such as relevance ranking, addressing the query-document vocabulary mismatch problem by using a semantic rather than lexical matching. Although initial iterations of neural models do not outperform traditional lexical-matching baselines, the level of interest and effort in this area is increasing, potentially leading to a breakthrough. The popularity of the recent SIGIR 2016 workshop on Neural Information Retrieval provides evidence to the growing interest in neural models for IR. While recent tutorials have covered some aspects of deep learning for retrieval tasks, there is a significant scope for organizing a tutorial that focuses on the fundamentals of representation learning for text retrieval. The goal of this tutorial will be to introduce state-of-the-art neural embedding models and bridge the gap between these neural models with early representation learning approaches in IR (e.g., LSA). We will discuss some of the key challenges and insights in making these models work in practice, and demonstrate one of the toolsets available to researchers interested in this area.

References

  1. A. Atreya and C. Elkan. Latent semantic indexing (lsi) fails for trec collections. ACM SIGKDD Explorations Newsletter, 12 (2): 5--10, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. D. Bahdanau, K. Cho, and Y. Bengio. Neural machine translation by jointly learning to align and translate. pharXiv preprint arXiv:1409.0473, 2014.Google ScholarGoogle Scholar
  3. D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent dirichlet allocation. the Journal of machine Learning research, 3: 993--1022, 2003.Google ScholarGoogle Scholar
  4. N. Craswell, W. B. Croft, J. Guo, B. Mitra, and M. de Rijke. Report on the sigir 2016 workshop on neural information retrieval (neu-ir). 2016.Google ScholarGoogle Scholar
  5. S. C. Deerwester, S. T. Dumais, T. K. Landauer, G. W. Furnas, and R. A. Harshman. Indexing by latent semantic analysis. JASIS, 41 (6): 391--407, 1990. Google ScholarGoogle ScholarCross RefCross Ref
  6. F. Diaz, B. Mitra, and N. Craswell. Query expansion with locally-trained word embeddings. In Proc. ACL, 2016. Google ScholarGoogle ScholarCross RefCross Ref
  7. A. M. Elkahky, Y. Song, and X. He. A multi-view deep learning approach for cross domain user modeling in recommendation systems. In Proc. WWW, pages 278--288, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. H. Fang, S. Gupta, F. Iandola, R. Srivastava, L. Deng, P. Dollár, J. Gao, X. He, M. Mitchell, J. Platt, et al. From captions to visual concepts and back. arXiv preprint arXiv:1411.4952, 2014.Google ScholarGoogle Scholar
  9. D. Ganguly, D. Roy, M. Mitra, and G. J. Jones. Word embedding based generalized language model for information retrieval. In Proc. SIGIR, pages 795--798. ACM, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. J. Gao, P. Pantel, M. Gamon, X. He, L. Deng, and Y. Shen. Modeling interestingness with deep neural networks. In Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, 2014. Google ScholarGoogle ScholarCross RefCross Ref
  11. M. Grbovic, N. Djuric, V. Radosavljevic, and N. Bhamidipati. Search retargeting using directed query embeddings. In Proc. WWW, pages 37--38. International World Wide Web Conferences Steering Committee, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. P. Gupta, K. Bali, R. E. Banchs, M. Choudhury, and P. Rosso. Query expansion for mixed-script information retrieval. In Proc. SIGIR, pages 677--686. ACM, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. X. He, R. Srivastava, J. Gao, and L. Deng. Joint learning of distributed representations for images and texts. arXiv preprint arXiv:1504.03083, 2015.Google ScholarGoogle Scholar
  14. F. Hill, K. Cho, S. Jean, C. Devin, and Y. Bengio. Not all neural embeddings are born equal. arXiv preprint arXiv:1410.0718, 2014.Google ScholarGoogle Scholar
  15. T. Hofmann. Probabilistic latent semantic indexing. In Proc. SIGIR, pages 50--57. ACM, 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. B. Hu, Z. Lu, H. Li, and Q. Chen. Convolutional neural network architectures for matching natural language sentences. In Proc. NIPS, pages 2042--2050, 2014.Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. P.-S. Huang, X. He, J. Gao, L. Deng, A. Acero, and L. Heck. Learning deep structured semantic models for web search using clickthrough data. In Proc. CIKM, pages 2333--2338. ACM, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. R. Jozefowicz, O. Vinyals, M. Schuster, N. Shazeer, and Y. Wu. Exploring the limits of language modeling. arXiv preprint arXiv:1602.02410, 2016.Google ScholarGoogle Scholar
  19. N. Kalchbrenner, E. Grefenstette, and P. Blunsom. A convolutional neural network for modelling sentences. arXiv preprint arXiv:1404.2188, 2014.Google ScholarGoogle Scholar
  20. T. Kenter and M. de Rijke. Short text similarity with word embeddings. In Proc. CIKM, volume 15, page 115. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Q. V. Le and T. Mikolov. Distributed representations of sentences and documents. arXiv preprint arXiv:1405.4053, 2014.Google ScholarGoogle Scholar
  22. O. Levy, Y. Goldberg, and I. Ramat-Gan. Linguistic regularities in sparse and explicit word representations. CoNLL-2014, page 171, 2014. Google ScholarGoogle ScholarCross RefCross Ref
  23. H. Li and Z. Lu. Deep learning for information retrieval.Google ScholarGoogle Scholar
  24. T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781, 2013.Google ScholarGoogle Scholar
  25. B. Mitra. Exploring session context using distributed representations of queries and reformulations. In Proc. SIGIR, pages 3--12. ACM, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. B. Mitra and N. Craswell. Query auto-completion for rare prefixes. In Proc. CIKM. ACM, To appear, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. B. Mitra, F. Diaz, and N. Craswell. Learning to match using local and distributed representations of text for web search. arXiv preprint arXiv:1610.08136, 2016.Google ScholarGoogle Scholar
  28. Mitra, Nalisnick, Craswell, and Caruana]mitra2016desmB. Mitra, E. Nalisnick, N. Craswell, and R. Caruana. A dual embedding space model for document ranking. arXiv preprint arXiv:1602.01137, 2016.Google ScholarGoogle Scholar
  29. E. Nalisnick, B. Mitra, N. Craswell, and R. Caruana. Improving document ranking with dual word embeddings. In Proc. WWW, 2016. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. J. Pennington, R. Socher, and C. D. Manning. Glove: Global vectors for word representation. Proc. EMNLP, 12: 1532--1543, 2014. Google ScholarGoogle ScholarCross RefCross Ref
  31. S. Robertson. Understanding inverse document frequency: on theoretical arguments for idf. Journal of documentation, 60 (5): 503--520, 2004. Google ScholarGoogle ScholarCross RefCross Ref
  32. D. Roy, D. Paul, M. Mitra, and U. Garain. Using word embeddings for automatic query expansion. arXiv preprint arXiv:1606.07608, 2016.Google ScholarGoogle Scholar
  33. R. Salakhutdinov and G. Hinton. Semantic hashing. International Journal of Approximate Reasoning, 50 (7): 969--978, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. G. Salton, A. Wong, and C.-S. Yang. A vector space model for automatic indexing. Communications of the ACM, 18 (11): 613--620, 1975. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. A. Severyn and A. Moschitti. Learning to rank short text pairs with convolutional deep neural networks. In Proc. SIGIR, pages 373--382. ACM, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Y. Shen, X. He, J. Gao, L. Deng, and G. Mesnil. Learning semantic representations using convolutional neural networks for web search. In Proc. WWW, pages 373--374, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. F. Sun, J. Guo, Y. Lan, J. Xu, and X. Cheng. Learning word representations by jointly modeling syntagmatic and paradigmatic relations. In Proc. ACL, 2015. Google ScholarGoogle ScholarCross RefCross Ref
  38. L. Vilnis and A. McCallum. Word representations via gaussian embedding. arXiv preprint arXiv:1412.6623, 2014.Google ScholarGoogle Scholar
  39. I. Vulić and M.-F. Moens. Monolingual and cross-lingual information retrieval models based on (bilingual) word embeddings. In Proc. SIGIR, pages 363--372. ACM, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. X. Yan, J. Guo, S. Liu, X. Cheng, and Y. Wang. Learning topics in short texts by non-negative matrix factorization on term correlation matrix. In Proceedings of the SIAM International Conference on Data Mining, 2013. Google ScholarGoogle ScholarCross RefCross Ref
  41. D. Yu, A. Eversole, M. Seltzer, K. Yao, Z. Huang, B. Guenter, O. Kuchaiev, Y. Zhang, F. Seide, H. Wang, et al. An introduction to computational networks and the computational network toolkit. Technical report, Tech. Rep. MSR, Microsoft Research, 2014, http://codebox/cntk, 2014.Google ScholarGoogle Scholar
  42. G. Zheng and J. Callan. Learning to reweight terms with distributed representations. In Proc. SIGIR, pages 575--584. ACM, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Neural Text Embeddings for Information Retrieval

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in
        • Published in

          cover image ACM Conferences
          WSDM '17: Proceedings of the Tenth ACM International Conference on Web Search and Data Mining
          February 2017
          868 pages
          ISBN:9781450346757
          DOI:10.1145/3018661

          Copyright © 2017 Owner/Author

          Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the Owner/Author.

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 2 February 2017

          Check for updates

          Qualifiers

          • tutorial

          Acceptance Rates

          WSDM '17 Paper Acceptance Rate80of505submissions,16%Overall Acceptance Rate498of2,863submissions,17%

          Upcoming Conference

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader