skip to main content
10.1145/3019612.3019857acmconferencesArticle/Chapter ViewAbstractPublication PagessacConference Proceedingsconference-collections
research-article

CogVis: attention-driven cognitive architecture for visual change detection

Published:03 April 2017Publication History

ABSTRACT

The role played by attention in the increasingly important area of change detection is well recognized. The construction of automated visual change detection systems will benefit from an architecture based on sound cognitive principles. This paper proposes an attention-driven cognitive vision architecture for change detection and shows its utility with a remote sensing case study.

References

  1. Bridewell, W., Bello, P. Incremental object perception in an attention driven cognitive architecture. In proceedings of the 37th Annual Meeting of the Cognitive Science Society, July 22--25, 279--284 (2015).Google ScholarGoogle Scholar
  2. Lansdale, M., Underwood, G., Davies, C. Something overlooked? How experts in change detection use visual saliency. Applied Cognitive Psychology 24, 213--225 (2010). Google ScholarGoogle ScholarCross RefCross Ref
  3. Itti, L., Koch, C. A saliency-based search mechanism for overt and convert shifts of visual attention. Vision Research, 1489--1506 (2000). Google ScholarGoogle ScholarCross RefCross Ref
  4. Chella, A., Gaglio, M., Frixione, S. A cognitive architecture for artificial vision. Artificial Intelligence 89 (1--2), 73--111 (1997). Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Chella, A., Frixione, M., Gaglio, S. An architecture of autonomous agents exploiting conceptual representations. Robotics and Autonomous Systems 25(3--4), 231--240 (1998).Google ScholarGoogle Scholar
  6. Chella, Gaglio, M., Chella, S., Gaglio, S., Frixione, S. Understanding Dynamic Scenes. Artifical Intelligence 123(1--2), 89--132 (2000). Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Schultheis, H., Barkowsky, T. Casimir: An architecture for mental spatial knowledge processing. Topics in Cognitive Science. 3(4), 778--795 (2011). Google ScholarGoogle ScholarCross RefCross Ref
  8. Cohn, G., Magee, R., Galata, A., Hogg, D., Hazarika, S. Towards an architecture for cognitive vision using qualitative spatio- temporal representations and abduction. Spatial Cognition III. LNAI 2685. 232--248 (2003). Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Rensink, R. Change Detection. Annu. Rev. Psychol. 53, 245--77 (2002). Google ScholarGoogle ScholarCross RefCross Ref
  10. Desolneux, A., Moisan, L., Morel, J.-M. From gestalt theory to image analysis - A probabilistic approach. (Accessed July 10, 2006) Available at http//www.math-info.univ-paris5.fr/~moisan/papers/2006-9.pdf.Google ScholarGoogle Scholar
  11. Flynn, M., Kanerva, P., Bhadkamkar, N. Sparse Distributed Memory Principles and Operation. (December 1989)Google ScholarGoogle Scholar
  12. Kanerva, P. Chapter 3. Sparse Distributed Memory and Related Models. 50--76 (2002).Google ScholarGoogle Scholar
  13. Snaider, J., McCall, R., Franklin, S. The LIDA framework as a general tool for AGI. In the proceedings of The Fourth Conference on Artificial General Intelligence, Mountain View, California, USA (2011). Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Hussain, M., Chen, D., Cheng, A., Wei, H., Stanley, D. Change detection from remotely sensed images from pixel-based to object- based approaches. ISPR Journal of Photogrammetry and Remote Sensing. 80, 91--106 (2013). Google ScholarGoogle ScholarCross RefCross Ref
  15. CDNetA video database for testing change detection algorithms. In Changedetection.net.Google ScholarGoogle Scholar
  16. Gardenfors, P. Three level of inductive inference. D. Prawitz, B. Skyrms and D. Westerstahl, eds. Logic, Methodology, and Philosophy of Science IX. Elsevier Science, Amsterdam (1994).Google ScholarGoogle Scholar
  17. Xu, K., Lei Ba, J., Kiros, R., Cho, K., Courville, A., Salakhutdinov, R., Zemel, R., Bengio, Y. Show attend and Tell Neural image caption generation with visual attention. In the proceedings of 32nd International Conference on Machine Learning, Lille, France (2015). Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Madl, T., Baars, B., Franklin, S. The timing of the cognitive cycle. PLoSONE, 6(4):e14803. Google ScholarGoogle ScholarCross RefCross Ref
  19. Sowa, J. The cognitive cycle. (Accessed 2015) Available at http://www.jfsowa.com/pubs/cogcycle.pdf.Google ScholarGoogle Scholar
  20. Sowa, J. Semantic networks, Encyclopedia of artificial intelligence, second edition, edited by S. C. Shapiro. Wiley, New York. Updated version at http://www.jfsowa.com/pubs/semnet.pdf (1992). Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Deshpande, S., Ray, K., Inamdar, A., Vin, H. Semi-supervised extraction of economic zones from urban area using hyperspectral data. In the proceedings of Asian Conference on Remote Sensing, Oct. 19--23, Manila, Philippines (2015).Google ScholarGoogle Scholar
  22. Desolneux, A., Moisan, L., Morel, J.-M.: Meaningful alignments. International Journal of Computer Vision, 40(1), 7--23 (2000). Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Fei-Fei, L., Iyer, A., Koch, C., Perona, P. What do we perceive in a glance of a real-world scene? Journal of Vision, 7(10), 1--29 (2007). Google ScholarGoogle ScholarCross RefCross Ref
  24. Henderson, J., Hollingworth, A. High-level scene perception. Annual Review of Psychology, 50, 43--71 (1999). Google ScholarGoogle ScholarCross RefCross Ref
  25. Singh, M., Hoffman, D. Chapter 9 - Part-based Representations of Visual Shape. In Shipley, T., Kellman, P., eds. from Fragments to Objects Grouping and Segmentation in Vision. Elsevier Science, North Holland Press (2001) 401--459.Google ScholarGoogle Scholar
  26. Hoffman, D., Richards, W. Parts of recognition. Cognition, 18, 65--96 (1984). Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. CogVis: attention-driven cognitive architecture for visual change detection

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Conferences
        SAC '17: Proceedings of the Symposium on Applied Computing
        April 2017
        2004 pages
        ISBN:9781450344869
        DOI:10.1145/3019612

        Copyright © 2017 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 3 April 2017

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

        Acceptance Rates

        Overall Acceptance Rate1,650of6,669submissions,25%

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader