skip to main content
research-article

Toward a Perceptually Uniform Parameter Space for Filter Transparency

Published:02 January 2017Publication History
Skip Abstract Section

Abstract

Filter models of perceptual transparency relate to regularities in the retinal projections caused by light transmitting objects like clear liquids or glass and have been found to predict the color conditions for perceptual transparency more accurately than alternative models. An important but unsolved problem is how exactly the model parameters are related to the properties of the perceived transparent layer. We previously proposed a parametrization in terms of hue, saturation, overall transmittance and clarity of the filter that seems to capture important dimensions of the phenomenal impressions. However, these parameters are not independent and the corresponding scales are not perceptually uniform. Here, an invertible transformation of this parameter space is proposed that strongly mitigates these problems. This results in a more intuitively interpretable parameter set that seems well suited for the analysis of existing stimuli and the generation of transparent overlays with predefined perceptual properties. The latter property makes it suitable for graphics and visualization applications.

References

  1. J. Beck. 1978. Additive and subtractive color mixture in color transparency. Perception 8 Psychophysics 23, 3 (1978), 265--267.Google ScholarGoogle Scholar
  2. D. H. Brainard. 1989. Calibration of a computer controlled color monitor. Color Research and Application 14 (1989), 23--34. Google ScholarGoogle ScholarCross RefCross Ref
  3. V. J. Chen and M. D’Zmura. 1998. Test of a convergence model for color transparency. Perception 27 (1998), 595--608. Google ScholarGoogle ScholarCross RefCross Ref
  4. O. Da Pos. 1989. Trasparenze. Icone s.r.l.:Padua.Google ScholarGoogle Scholar
  5. M. D’Zmura, P. Colantoni, K. Knoblauch, and B. Lagèt. 1997. Color transparency. Perception 26 (1997), 471--492. Google ScholarGoogle ScholarCross RefCross Ref
  6. R. M. Evans. 1959. Fluorescence and gray content of surface colors. Journal of the Optical Society of America 49, 11 (1959), 1049--1058. Google ScholarGoogle ScholarCross RefCross Ref
  7. F. Faul. 1997. Theoretische und Experimentelle Untersuchung Chromatischer Determinanten Perzeptueller Transparenz. Dissertation. Christian-Albrechts-Universität, Kiel.Google ScholarGoogle Scholar
  8. F. Faul and V. Ekroll. 2002. Psychophysical model of chromatic perceptual transparency based on subtractive color mixture. Journal of the Optical Society of America, A 19, 6 (2002), 1084--1095. Google ScholarGoogle ScholarCross RefCross Ref
  9. F. Faul and V. Ekroll. 2011. On the filter approach to perceptual transparency. Journal of Vision 11, 7 (2011), 1--33. DOI:http://dx.doi.org/10.1167/11.7.7 Google ScholarGoogle ScholarCross RefCross Ref
  10. F. Faul and V. Ekroll. 2012. Transparent layer constancy. Journal of Vision 12, 12 (2012), 1--26. DOI:http://dx.doi.org/10.1167/12.12.7 Google ScholarGoogle ScholarCross RefCross Ref
  11. J. Golz and D. I. A. MacLeod. 2003. Colorimetry for CRT displays. Journal of the Optical Society of America, A 20, 5 (2003), 769--781. Google ScholarGoogle ScholarCross RefCross Ref
  12. B. G. Khang and Q. Zaidi. 2002. Accuracy of color scission for spectral transparencies. Journal of Vision 2, 6 (2002), 451--466. DOI:http://dx.doi.org/10.1167/2.6.3 Google ScholarGoogle ScholarCross RefCross Ref
  13. J. J. Koenderink. 2010. Color for the Sciences. MIT Press.Google ScholarGoogle Scholar
  14. L. T. Maloney and J. N. Yang. 2003. Maximum likelihood difference scaling. Journal of Vision 3 (2003), 573--585. Google ScholarGoogle ScholarCross RefCross Ref
  15. F. Metelli. 1974. The perception of transparency. Scientific American 230 (1974), 90--98. Google ScholarGoogle ScholarCross RefCross Ref
  16. S. Nakauchi, P. Silfsten, J. Parkkinen, and S. Usui. 1999. Computational theory of color transparency: Recovery of spectral properties for overlapping surfaces. Journal of the Optical Society of America, A 16, 11 (1999), 2612--2624. Google ScholarGoogle ScholarCross RefCross Ref
  17. S. M. Newhall, D. Nickerson, and D. B. Judd. 1943. Final report of the OSA subcommittee on the spacing of the Munsell colors. Journal of the Optical Society of America 33, 7 (1943), 385--411. Google ScholarGoogle ScholarCross RefCross Ref
  18. T. Porter and T. Duff. 1984. Compositing digital images. In ACM SIGGRAPH Computer Graphics, Vol. 18. ACM, 253--259. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. W. Richards, J. J. Koenderink, and A. van Doorn. 2009. Transparency and imaginary colors. Journal of the Optical Society of America, A 26, 5 (2009), 1119--1128. Google ScholarGoogle ScholarCross RefCross Ref
  20. M. Singh and B. L. Anderson. 2002. Toward a perceptual theory of transparency. Psychological Review 109, 3 (2002), 492--519. Google ScholarGoogle ScholarCross RefCross Ref
  21. M. Singh and B. L. Anderson. 2006. Photometric determinants of perceived transparency. Vision Research 46 (2006), 879--894. Google ScholarGoogle ScholarCross RefCross Ref
  22. A. R. Smith. 1978. Color gamut transform pairs. SIGGRAPH Computer Graphics 12, 3 (1978), 12--19. DOI:http://dx.doi.xorg/10.1145/965139.807361Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. W. S. Stiles, G. Wyszecki, and N. Ohta. 1977. Counting metameric object-color stimuli using frequency-limited spectral reflectance functions. Journal of the Optical Society of America 67 (1977), 779--784. Google ScholarGoogle ScholarCross RefCross Ref
  24. A. Stockman, D. I. A. MacLeod, and N. E. Johnson. 1993. Spectral sensitivities of the human cones. Journal of the Optical Society of America, A 10, 12 (1993), 2491--2521. Google ScholarGoogle ScholarCross RefCross Ref
  25. S. Westland and C. Ripamonti. 2000. Invariant cone-excitation ratios may predict transparency. Journal of the Optical Society of America, A 17, 2 (2000), 255--264. Google ScholarGoogle ScholarCross RefCross Ref
  26. G. Wyszecki and W. S. Stiles. 1982. Color Science: Concepts and Methods, Quantitative Data and Formulae (2nd ed.). John Wiley and Sons.Google ScholarGoogle Scholar

Index Terms

  1. Toward a Perceptually Uniform Parameter Space for Filter Transparency

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image ACM Transactions on Applied Perception
          ACM Transactions on Applied Perception  Volume 14, Issue 2
          April 2017
          105 pages
          ISSN:1544-3558
          EISSN:1544-3965
          DOI:10.1145/2997647
          Issue’s Table of Contents

          Copyright © 2017 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 2 January 2017
          • Revised: 1 November 2016
          • Accepted: 1 November 2016
          • Received: 1 February 2016
          Published in tap Volume 14, Issue 2

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article
          • Research
          • Refereed

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader