skip to main content
10.1145/3025453.3025898acmconferencesArticle/Chapter ViewAbstractPublication PageschiConference Proceedingsconference-collections
research-article

Printflatables: Printing Human-Scale, Functional and Dynamic Inflatable Objects

Authors Info & Claims
Published:02 May 2017Publication History

ABSTRACT

Printflatables is a design and fabrication system for human-scale, functional and dynamic inflatable objects. We use inextensible thermoplastic fabric as the raw material with the key principle of introducing folds and thermal sealing. Upon inflation, the sealed object takes the expected three dimensional shape. The workflow begins with the user specifying an intended 3D model which is decomposed to two dimensional fabrication geometry. This forms the input for a numerically controlled thermal contact iron that seals layers of thermoplastic fabric. In this paper, we discuss the system design in detail, the pneumatic primitives that this technique enables and merits of being able to make large, functional and dynamic pneumatic artifacts. We demonstrate the design output through multiple objects which could motivate fabrication of inflatable media and pressure-based interfaces.

Skip Supplemental Material Section

Supplemental Material

pn3436p.mp4

mp4

3 MB

p3669-sareen.mp4

mp4

203.6 MB

References

  1. Joanna Berzowska and Marcelo Coelho. 2005. Kukkia and vilkas: Kinetic electronic garments. In Proceedings of Ninth IEEE International Symposium on Wearable Computers. DOI: http://dx.doi.org/10.1109/ISWC.2005.29 Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Andrew Bolton. 2002. The supermodern wardrobe. V&A Publications London.Google ScholarGoogle Scholar
  3. Fergal B Coulter and Anton Ianakiev. 2015. 4D Printing Inflatable Silicone Structures. 3D Printing and Additive Manufacturing (2015). DOI: http://dx.doi.org/10.1.1/jpb001Google ScholarGoogle Scholar
  4. Furuta et al. 2010. A film balloon design system integrated with shell element simulation. Proc. of EUROGRAPHICS 2010 (2010). DOI: http://dx.doi.org/10.2312/egsh.20101041Google ScholarGoogle Scholar
  5. Yao et al. 2013. PneUI: Pneumatically actuated soft composite materials for shape changing interfaces. In Proceedings of the 26th annual ACM symposium on User interface software and technology. DOI: http://dx.doi.org/10.1145/2501988.2502037 Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Sean Follmer, Daniel Leithinger, Alex Olwal, Nadia Cheng, and Hiroshi Ishii. 2012. Jamming user interfaces: programmable particle stiffness and sensing for malleable and shape-changing devices. In Proceedings of the 25th annual ACM symposium on User interface software and technology. DOI: http://dx.doi.org/10.1145/2380116.2380181 Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Grasshopper. 2016. Grasshopper for Rhino. (2016). http://www.grasshopper3d.com/Google ScholarGoogle Scholar
  8. Grasshopper3D. 2016. Kangaroo for Grasshopper. (2016). http://www.grasshopper3d.com/group/kangarooGoogle ScholarGoogle Scholar
  9. Fumio Hara and Rolf Pfeifer. 2003. Morpho-functional machines: The new species: Designing embodied intelligence. Springer Science & Business Media. DOI: http://dx.doi.org/10.1007/978--4--431--67869--4Google ScholarGoogle Scholar
  10. Thomas Herzog, Gernot Minke, and Hans Eggers. 1976. Pneumatic structures: A handbook of inflatable architecture. Oxford University Press.Google ScholarGoogle Scholar
  11. Hovding. 2016. Hovding Airbag for Cyclists. (2016). http://www.hovding.com [Online; accessed 18-September-2016].Google ScholarGoogle Scholar
  12. Yuki Igarashi and Takeo Igarashi. 2008. Pillow: Interactive flattening of a 3D model for plush toy design. In Smart Graphics. Springer, 1--7. DOI: http://dx.doi.org/10.1007/978--3--540--85412--8_1Google ScholarGoogle Scholar
  13. Filip Ilievski, Aaron D Mazzeo, Robert F Shepherd, Xin Chen, and George M Whitesides. 2011. Soft robotics for chemists. Angewandte Chemie International Edition (2011). DOI: http://dx.doi.org/10.1002/anie.201006464 Google ScholarGoogle ScholarCross RefCross Ref
  14. Jacno Inc. 2016. Janco Inflatables Manufacturing. (2016). http://www.janco-inc.com/manufacturing-services/rf-sealing.html [Online; accessed 18-December-2016].Google ScholarGoogle Scholar
  15. Sangbae Kim, Cecilia Laschi, and Barry Trimmer. 2013. Soft robotics: a bioinspired evolution in robotics. Trends in biotechnology (2013). DOI: http://dx.doi.org/10.1016/j.tibtech.2013.03.002 Google ScholarGoogle ScholarCross RefCross Ref
  16. Ellen Lupton. 2002. Skin: New Design Organics. Skin: Surface, Substance and Design. NY: Princeton Architectural Press (2002).Google ScholarGoogle Scholar
  17. Ramses V Martinez et al. 2012. Elastomeric Origami: Programmable Paper-Elastomer Composites as Pneumatic Actuators. Advanced Functional Materials 22, 7 (2012), 1376--1384. DOI: http://dx.doi.org/10.1002/adfm.201102978 Google ScholarGoogle ScholarCross RefCross Ref
  18. Ramses V Martinez et al. 2013. Robotic tentacles with three-dimensional mobility based on flexible elastomers. Advanced Materials 25, 2 (2013), 205--212. DOI: http://dx.doi.org/10.1002/adma.201203002 Google ScholarGoogle ScholarCross RefCross Ref
  19. Yuki Mori and Takeo Igarashi. 2007. Plushie: an interactive design system for plush toys. In ACM Transactions on Graphics (TOG). DOI: http://dx.doi.org/10.1145/1276377.1276433 Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Ryuma Niiyama, Daniela Rus, and Sangbae Kim. 2014. Pouch motors: Printable/inflatable soft actuators for robotics. In 2014 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 6332--6337. DOI:http://dx.doi.org/10.1089/3dp.2015.0017 Google ScholarGoogle ScholarCross RefCross Ref
  21. Ryuma Niiyama, Xu Sun, Cynthia Sung, Byoungkwon An, Daniela Rus, and Sangbae Kim. 2015a. Pouch motors: Printable soft actuators integrated with computational design. Soft Robotics 2, 2 (2015), 59--70. DOI:http://dx.doi.org/10.1089/soro.2014.0023 Google ScholarGoogle ScholarCross RefCross Ref
  22. Ryuma Niiyama, Xu Sun, Lining Yao, Hiroshi Ishii, Daniela Rus, and Sangbae Kim. 2015b. Sticky Actuator: Free-Form Planar Actuators for Animated Objects. In Proceedings of the Ninth International Conference on Tangible, Embedded, and Embodied Interaction. ACM, 77--84. DOI: http://dx.doi.org/10.1145/2677199.2680600 Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Jifei Ou et al. 2014. jamSheets: thin interfaces with tunable stiffness enabled by layer jamming. In Proceedings of the 8th International Conference on Tangible, Embedded and Embodied Interaction. ACM. DOI:http://dx.doi.org/10.1145/2540930.2540971 Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Jifei Ou et al. 2016. aeroMorph-Heat-sealing Inflatable Shape-change Materials for Interaction Design. In Proceedings of the 29th Annual Symposium on User Interface Software and Technology. ACM, 121--132. DOI:http://dx.doi.org/10.1145/2984511.2984520 Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Laura Perovich, Philippa Mothersill, and Jennifer Broutin Farah. 2014. Awakened apparel: embedded soft actuators for expressive fashion and functional garments. In Proceedings of the 8th International Conference on Tangible, Embedded and Embodied Interaction. DOI: http://dx.doi.org/10.1145/2540930.2540958 Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Panagiotis Polygerinos, Kevin C Galloway, Emily Savage, Maxwell Herman, Kathleen O'Donnell, and Conor J Walsh. 2015. Soft robotic glove for hand rehabilitation and task specific training. In 2015 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2913--2919. DOI: http://dx.doi.org/10.1109/ICRA.2015.7139597 Google ScholarGoogle ScholarCross RefCross Ref
  27. Panagiotis Polygerinos, Stacey Lyne, Zheng Wang, Luis Fernando Nicolini, Bobak Mosadegh, George M Whitesides, and Conor J Walsh. 2013. Towards a soft pneumatic glove for hand rehabilitation. In 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, 1512--1517. DOI: http://dx.doi.org/10.1109/IROS.2013.6696549 Google ScholarGoogle ScholarCross RefCross Ref
  28. Panagiotis Polygerinos, Zheng Wang, Kevin C Galloway, Robert J Wood, and Conor J Walsh. 2015. Soft robotic glove for combined assistance and at-home rehabilitation. Robotics and Autonomous Systems 73 (2015), 135--143. DOI: http://dx.doi.org/10.1016/j.robot.2014.08.014 Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Dong Qin, Younan Xia, and George M Whitesides. 2010. Soft lithography for micro-and nanoscale patterning. Nature protocols (2010). DOI: http://dx.doi.org/10.1038/nprot.2009.234 Google ScholarGoogle ScholarCross RefCross Ref
  30. Radio frequency welding. 2016. Heat Sealing using RF. (2016). http://radiofrequencywelding.com/ services/heat-sealing/ [Online; accessed 18-December-2016].Google ScholarGoogle Scholar
  31. Sabine Seymour. 2008. Fashionable technology: The intersection of design, fashion, science, and technology. Springer Publishing Company, Incorporated. Google ScholarGoogle ScholarCross RefCross Ref
  32. Mélina Skouras, Bernhard Thomaszewski, Peter Kaufmann, Akash Garg, Bernd Bickel, Eitan Grinspun, and Markus Gross. 2014. Designing inflatable structures. ACM Transactions on Graphics (TOG) 33, 4 (2014), 63. DOI:http://dx.doi.org/10.1145/2601097.2601166 Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Courtenay Smith and Sean Topham. 2005. Xtreme fashion. Prestel Pub.Google ScholarGoogle Scholar
  34. Vijay K Stokes. 1989. Joining methods for plastics and plastic composites: an overview. Polymer Engineering & Science 29, 19 (1989), 1310--1324. DOI: http://dx.doi.org/10.1002/pen.760291903 Google ScholarGoogle ScholarCross RefCross Ref
  35. Barry A Trimmer, Ann E Takesian, Brian M Sweet, Chris B Rogers, Daniel C Hake, and Daniel J Rogers. 2006. Caterpillar locomotion: a new model for soft-bodied climbing and burrowing robots. In 7th International Symposium on Technology and the Mine Problem, Vol. 1. Mine Warfare Association Monterey, CA, 1--10. DOI:http://dx.doi.org/10.1.1.84.4419Google ScholarGoogle Scholar
  36. Deepak Trivedi, Christopher D Rahn, William M Kier, and Ian D Walker. 2008. Soft robotics: Biological inspiration, state of the art, and future research. Applied Bionics and Biomechanics (2008). DOI: http://dx.doi.org/10.1080/11762320802557865 Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Human UI. 2016. Human UI for Grasshopper. (2016). http://www.food4rhino.com/app/human-uiGoogle ScholarGoogle Scholar
  38. Marynel Vázquez, Eric Brockmeyer, Ruta Desai, Chris Harrison, and Scott E Hudson. 2015. 3d printing pneumatic device controls with variable activation force capabilities. In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems. ACM, 1295--1304. DOI: http://dx.doi.org/10.1145/2702123.2702569 Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Roel Vertegaal and Ivan Poupyrev. 2008. Organic user interfaces. Commun. ACM (2008). DOI: http://dx.doi.org/10.1145/1349026.1349033 Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Printflatables: Printing Human-Scale, Functional and Dynamic Inflatable Objects

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      CHI '17: Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems
      May 2017
      7138 pages
      ISBN:9781450346559
      DOI:10.1145/3025453

      Copyright © 2017 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 2 May 2017

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      CHI '17 Paper Acceptance Rate600of2,400submissions,25%Overall Acceptance Rate6,199of26,314submissions,24%

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader