skip to main content
10.1145/3038912.3052555acmotherconferencesArticle/Chapter ViewAbstractPublication PageswwwConference Proceedingsconference-collections
research-article
Public Access

Understanding and Discovering Deliberate Self-harm Content in Social Media

Published:03 April 2017Publication History

ABSTRACT

Studies suggest that self-harm users found it easier to discuss self-harm-related thoughts and behaviors using social media than in the physical world. Given the enormous and increasing volume of social media data, on-line self-harm content is likely to be buried rapidly by other normal content. To enable voices of self-harm users to be heard, it is important to distinguish self-harm content from other types of content. In this paper, we aim to understand self-harm content and provide automatic approaches to its detection. We first perform a comprehensive analysis on self-harm social media using different input cues. Our analysis, the first of its kind in large scale, reveals a number of important findings. Then we propose frameworks that incorporate the findings to discover self-harm content under both supervised and unsupervised settings. Our experimental results on a large social media dataset from Flickr demonstrate the effectiveness of the proposed frameworks and the importance of our findings in discovering self-harm content.

References

  1. S. Chancellor, Z. J. Lin, and M. D. Choudhury. "this post will just get taken down": Characterizing removed pro-eating disorder social media content. In CHI, San Jose, CA, USA, May 7-12, 2016. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. A. L. Chapman, K. L. Gratz, and M. Z. Brown. Solving the puzzle of deliberate self-harm: The experiential avoidance model. Behaviour research and therapy, 44(3):371--394, 2006.Google ScholarGoogle Scholar
  3. X. Chen and K. S. Candan. Lwi-svd: low-rank, windowed, incremental singular value decompositions on time-evolving data sets. In Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining, pages 987--996. ACM, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. M.-M. Cheng, N. J. Mitra, X. Huang, P. H. Torr, and S.-M. Hu. Global contrast based salient region detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 37(3):569--582, 2015.Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. J. Cohen. Weighted kappa: Nominal scale agreement provision for scaled disagreement or partial credit. Psychological bulletin, 70(4):213, 1968.Google ScholarGoogle ScholarCross RefCross Ref
  6. K. Daine, K. Hawton, V. Singaravelu, A. Stewart, S. Simkin, and P. Montgomery. The power of the web: a systematic review of studies of the influence of the internet on self-harm and suicide in young people. PloS one, 8(10):e77555, 2013.Google ScholarGoogle ScholarCross RefCross Ref
  7. M. De Choudhury, M. Gamon, S. Counts, and E. Horvitz. Predicting depression via social media. In ICWSM, page 2, 2013.Google ScholarGoogle Scholar
  8. M. De Choudhury, E. Kiciman, M. Dredze, G. Coppersmith, and M. Kumar. Discovering shifts to suicidal ideation from mental health content in social media. In Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems, pages 2098--2110. ACM, 2016. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. C. H. Ding, T. Li, and M. I. Jordan. Convex and semi-nonnegative matrix factorizations. IEEE transactions on pattern analysis and machine intelligence, 32(1):45--55, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. M. P. Dyson, L. Hartling, J. Shulhan, A. Chisholm, A. Milne, P. Sundar, S. D. Scott, and A. S. Newton. A systematic review of social media use to discuss and view deliberate self-harm acts. PLoS one, 11(5):e0155813, 2016.Google ScholarGoogle ScholarCross RefCross Ref
  11. C. Eichenberg, J. Dyba, and M. Schott. Bindungsstile, nutzungsmotive und internetsucht. Psychiatrische Praxis, 44(01):41--46, 2017.Google ScholarGoogle Scholar
  12. K. Gimpel, N. Schneider, B. O'Connor, D. Das, D. Mills, J. Eisenstein, M. Heilman, D. Yogatama, J. Flanigan, and N. A. Smith. Part-of-speech tagging for twitter: Annotation, features, and experiments. In Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies: short papers-Volume 2, pages 42--47. Association for Computational Linguistics, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. L. A. Goodman. Snowball sampling. The annals of mathematical statistics, pages 148--170, 1961.Google ScholarGoogle Scholar
  14. K. L. Gratz, S. D. Conrad, and L. Roemer. Risk factors for deliberate self-harm among college students. American journal of Orthopsychiatry, 72(1):128, 2002.Google ScholarGoogle Scholar
  15. K. Hawton, J. Fagg, S. Simkin, E. Bale, and A. Bond. Trends in deliberate self-harm in oxford, 1985--1995. implications for clinical services and the prevention of suicide. The British Journal of Psychiatry, 171(6):556--560, 1997.Google ScholarGoogle ScholarCross RefCross Ref
  16. K. Hawton and A. James. Suicide and deliberate self harm in young people. Bmj, 330(7496):891--894, 2005.Google ScholarGoogle ScholarCross RefCross Ref
  17. K. Hawton, K. Rodham, E. Evans, and R. Weatherall. Deliberate self harm in adolescents: self report survey in schools in england. Bmj, 325(7374):1207--1211, 2002.Google ScholarGoogle ScholarCross RefCross Ref
  18. K. Hawton, K. E. Saunders, and R. C. O'Connor. Self-harm and suicide in adolescents. The Lancet, 379(9834):2373--2382, 2012.Google ScholarGoogle ScholarCross RefCross Ref
  19. D. J. Houghton and A. N. Joinson. Linguistic markers of secrets and sensitive self-disclosure in twitter. In System Science (HICSS), 2012 45th Hawaii International Conference on, pages 3480--3489. IEEE, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. L. Itti and C. Koch. Computational modelling of visual attention. Nature reviews neuroscience, 2(3):194--203, 2001.Google ScholarGoogle Scholar
  21. S. Kairam, J. Kaye, J. A. G. Gómez, and D. A. Shamma. Snap decisions? how users, content, and aesthetics interact to shape photo sharing behaviors. CHI 2016, 2016. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Y. Kim. Convolutional neural networks for sentence classification. arXiv preprint arXiv:1408.5882, 2014.Google ScholarGoogle Scholar
  23. A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In Advances in neural information processing systems, pages 1097--1105, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. X. Li, S. Huang, K. S. Candan, and M. L. Sapino. Focusing decomposition accuracy by personalizing tensor decomposition (PTD). In Proceedings of the 23rd ACM International Conference on Conference on Information and Knowledge Management, CIKM 2014, Shanghai, China, November 3-7, 2014, pages 689--698, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. W. Lian, P. Rai, E. Salazar, and L. Carin. Integrating features and similarities: flexible models for heterogeneous multiview data. In Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, pages 2757--2763. AAAI Press, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. L. Lustberg and C. F. Reynolds. Depression and insomnia: questions of cause and effect. Sleep medicine reviews, 4(3):253--262, 2000.Google ScholarGoogle Scholar
  27. J. Machajdik and A. Hanbury. Affective image classification using features inspired by psychology and art theory. In Proceedings of the 18th ACM international conference on Multimedia, pages 83--92. ACM, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781, 2013.Google ScholarGoogle Scholar
  29. M. A. Milkie. Social comparisons, reflected appraisals, and mass media: The impact of pervasive beauty images on black and white girls' self-concepts. Social Psychology Quarterly, pages 190--210, 1999.Google ScholarGoogle ScholarCross RefCross Ref
  30. M. A. Moreno, A. Ton, E. Selkie, and Y. Evans. Secret society 123: understanding the language of self-harm on instagram. Journal of Adolescent Health, 58(1):78--84, 2016.Google ScholarGoogle ScholarCross RefCross Ref
  31. J. J. Muehlenkamp, L. Claes, L. Havertape, and P. L. Plener. International prevalence of adolescent non-suicidal self-injury and deliberate self-harm. Child and Adolescent Psychiatry and Mental Health, 6(1):1, 2012.Google ScholarGoogle ScholarCross RefCross Ref
  32. J. P. Pestian, P. Matykiewicz, M. Linn-Gust, B. South, O. Uzuner, J. Wiebe, K. B. Cohen, J. Hurdle, and C. Brew. Sentiment analysis of suicide notes: A shared task. Biomedical informatics insights, 5(Suppl. 1):3, 2012.Google ScholarGoogle Scholar
  33. K. Petrie and R. Brook. Sense of coherence, self-esteem, depression and hopelessness as correlates of reattempting suicide. British Journal of Clinical Psychology, 31(3):293--300, 1992.Google ScholarGoogle ScholarCross RefCross Ref
  34. J. Robinson, G. Cox, E. Bailey, S. Hetrick, M. Rodrigues, S. Fisher, and H. Herrman. Social media and suicide prevention: a systematic review. Early Interv Psychiatry, 2015.Google ScholarGoogle Scholar
  35. S. S. Rude, C. R. Valdez, S. Odom, and A. Ebrahimi. Negative cognitive biases predict subsequent depression. Cognitive Therapy and Research, 27(4):415--429, 2003.Google ScholarGoogle ScholarCross RefCross Ref
  36. A. Sadilek, H. A. Kautz, and V. Silenzio. Modeling spread of disease from social interactions. 2012.Google ScholarGoogle Scholar
  37. S. Siersdorfer, E. Minack, F. Deng, and J. Hare. Analyzing and predicting sentiment of images on the social web. In Proceedings of the 18th ACM international conference on Multimedia, pages 715--718. ACM, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. S. W. Stirman and J. W. Pennebaker. Word use in the poetry of suicidal and nonsuicidal poets. Psychosomatic Medicine, 63(4):517--522, 2001.Google ScholarGoogle ScholarCross RefCross Ref
  39. B. Thomee, D. A. Shamma, G. Friedland, B. Elizalde, K. Ni, D. Poland, D. Borth, and L.-J. Li. The new data and new challenges in multimedia research. arXiv preprint arXiv:1503.01817, 2015.Google ScholarGoogle Scholar
  40. T. Tuytelaars and K. Mikolajczyk. Local invariant feature detectors: a survey. Foundations and trends® in computer graphics and vision, 3(3):177--280, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. N. X. Vinh, J. Epps, and J. Bailey. Information theoretic measures for clusterings comparison: Variants, properties, normalization and correction for chance. JLMR, pages 2837--2854, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. S. Wang, Y. Wang, J. Tang, C. Aggarwal, S. Ranganath, and H. Liu. Exploiting hierarchical structures for unsupervised feature selection. In Proceedings of the 2017 SIAM International Conference on Data Mining, 2017.Google ScholarGoogle ScholarCross RefCross Ref
  43. S. Wang, Y. Wang, J. Tang, K. Shu, S. Ranganath, and H. Liu. What your images reveal: Exploiting visual contents for point-of-interest recommendation. In Proceedings of the 26th International Conference on World Wide Web, 2017. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Y. Wang, Y. Hu, S. Kambhampati, and B. Li. Inferring sentiment from web images with joint inference on visual and social cues: A regulated matrix factorization approach. In Ninth International AAAI Conference on Web and Social Media, 2015.Google ScholarGoogle Scholar
  45. Y. Wang and B. Li. Sentiment analysis for social media images. In Proceedings of the 2015 IEEE International Conference on Data Mining Workshop (ICDMW), pages 1584--1591. IEEE Computer Society, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Y. Wang, S. Wang, J. Tang, H. Liu, and B. Li. Unsupervised sentiment analysis for social media images. In Twenty-Fourth International Joint Conference on Artificial Intelligence, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Y. Wang, S. Wang, J. Tang, H. Liu, and B. Li. Ppp: Joint pointwise and pairwise image label prediction. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 6005--6013, 2016.Google ScholarGoogle ScholarCross RefCross Ref
  48. J. M. G. Williams and M. Williams. Cry of pain: Understanding suicide and self-harm. Penguin Group USA, 1997.Google ScholarGoogle Scholar
  49. E. Yom-Tov, L. Fernandez-Luque, I. Weber, and S. P. Crain. Pro-anorexia and pro-recovery photo sharing: a tale of two warring tribes. Journal of medical Internet research, 14(6):e151, 2012.Google ScholarGoogle Scholar

Index Terms

  1. Understanding and Discovering Deliberate Self-harm Content in Social Media

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Other conferences
      WWW '17: Proceedings of the 26th International Conference on World Wide Web
      April 2017
      1678 pages
      ISBN:9781450349130

      Copyright © 2017 Copyright is held by the International World Wide Web Conference Committee (IW3C2).

      Publisher

      International World Wide Web Conferences Steering Committee

      Republic and Canton of Geneva, Switzerland

      Publication History

      • Published: 3 April 2017

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      WWW '17 Paper Acceptance Rate164of966submissions,17%Overall Acceptance Rate1,899of8,196submissions,23%

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader