skip to main content
10.1145/3038912.3052555acmotherconferencesArticle/Chapter ViewAbstractPublication PagesthewebconfConference Proceedingsconference-collections
research-article
Public Access

Understanding and Discovering Deliberate Self-harm Content in Social Media

Published: 03 April 2017 Publication History

Abstract

Studies suggest that self-harm users found it easier to discuss self-harm-related thoughts and behaviors using social media than in the physical world. Given the enormous and increasing volume of social media data, on-line self-harm content is likely to be buried rapidly by other normal content. To enable voices of self-harm users to be heard, it is important to distinguish self-harm content from other types of content. In this paper, we aim to understand self-harm content and provide automatic approaches to its detection. We first perform a comprehensive analysis on self-harm social media using different input cues. Our analysis, the first of its kind in large scale, reveals a number of important findings. Then we propose frameworks that incorporate the findings to discover self-harm content under both supervised and unsupervised settings. Our experimental results on a large social media dataset from Flickr demonstrate the effectiveness of the proposed frameworks and the importance of our findings in discovering self-harm content.

References

[1]
S. Chancellor, Z. J. Lin, and M. D. Choudhury. "this post will just get taken down": Characterizing removed pro-eating disorder social media content. In CHI, San Jose, CA, USA, May 7-12, 2016.
[2]
A. L. Chapman, K. L. Gratz, and M. Z. Brown. Solving the puzzle of deliberate self-harm: The experiential avoidance model. Behaviour research and therapy, 44(3):371--394, 2006.
[3]
X. Chen and K. S. Candan. Lwi-svd: low-rank, windowed, incremental singular value decompositions on time-evolving data sets. In Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining, pages 987--996. ACM, 2014.
[4]
M.-M. Cheng, N. J. Mitra, X. Huang, P. H. Torr, and S.-M. Hu. Global contrast based salient region detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 37(3):569--582, 2015.
[5]
J. Cohen. Weighted kappa: Nominal scale agreement provision for scaled disagreement or partial credit. Psychological bulletin, 70(4):213, 1968.
[6]
K. Daine, K. Hawton, V. Singaravelu, A. Stewart, S. Simkin, and P. Montgomery. The power of the web: a systematic review of studies of the influence of the internet on self-harm and suicide in young people. PloS one, 8(10):e77555, 2013.
[7]
M. De Choudhury, M. Gamon, S. Counts, and E. Horvitz. Predicting depression via social media. In ICWSM, page 2, 2013.
[8]
M. De Choudhury, E. Kiciman, M. Dredze, G. Coppersmith, and M. Kumar. Discovering shifts to suicidal ideation from mental health content in social media. In Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems, pages 2098--2110. ACM, 2016.
[9]
C. H. Ding, T. Li, and M. I. Jordan. Convex and semi-nonnegative matrix factorizations. IEEE transactions on pattern analysis and machine intelligence, 32(1):45--55, 2010.
[10]
M. P. Dyson, L. Hartling, J. Shulhan, A. Chisholm, A. Milne, P. Sundar, S. D. Scott, and A. S. Newton. A systematic review of social media use to discuss and view deliberate self-harm acts. PLoS one, 11(5):e0155813, 2016.
[11]
C. Eichenberg, J. Dyba, and M. Schott. Bindungsstile, nutzungsmotive und internetsucht. Psychiatrische Praxis, 44(01):41--46, 2017.
[12]
K. Gimpel, N. Schneider, B. O'Connor, D. Das, D. Mills, J. Eisenstein, M. Heilman, D. Yogatama, J. Flanigan, and N. A. Smith. Part-of-speech tagging for twitter: Annotation, features, and experiments. In Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies: short papers-Volume 2, pages 42--47. Association for Computational Linguistics, 2011.
[13]
L. A. Goodman. Snowball sampling. The annals of mathematical statistics, pages 148--170, 1961.
[14]
K. L. Gratz, S. D. Conrad, and L. Roemer. Risk factors for deliberate self-harm among college students. American journal of Orthopsychiatry, 72(1):128, 2002.
[15]
K. Hawton, J. Fagg, S. Simkin, E. Bale, and A. Bond. Trends in deliberate self-harm in oxford, 1985--1995. implications for clinical services and the prevention of suicide. The British Journal of Psychiatry, 171(6):556--560, 1997.
[16]
K. Hawton and A. James. Suicide and deliberate self harm in young people. Bmj, 330(7496):891--894, 2005.
[17]
K. Hawton, K. Rodham, E. Evans, and R. Weatherall. Deliberate self harm in adolescents: self report survey in schools in england. Bmj, 325(7374):1207--1211, 2002.
[18]
K. Hawton, K. E. Saunders, and R. C. O'Connor. Self-harm and suicide in adolescents. The Lancet, 379(9834):2373--2382, 2012.
[19]
D. J. Houghton and A. N. Joinson. Linguistic markers of secrets and sensitive self-disclosure in twitter. In System Science (HICSS), 2012 45th Hawaii International Conference on, pages 3480--3489. IEEE, 2012.
[20]
L. Itti and C. Koch. Computational modelling of visual attention. Nature reviews neuroscience, 2(3):194--203, 2001.
[21]
S. Kairam, J. Kaye, J. A. G. Gómez, and D. A. Shamma. Snap decisions? how users, content, and aesthetics interact to shape photo sharing behaviors. CHI 2016, 2016.
[22]
Y. Kim. Convolutional neural networks for sentence classification. arXiv preprint arXiv:1408.5882, 2014.
[23]
A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In Advances in neural information processing systems, pages 1097--1105, 2012.
[24]
X. Li, S. Huang, K. S. Candan, and M. L. Sapino. Focusing decomposition accuracy by personalizing tensor decomposition (PTD). In Proceedings of the 23rd ACM International Conference on Conference on Information and Knowledge Management, CIKM 2014, Shanghai, China, November 3-7, 2014, pages 689--698, 2014.
[25]
W. Lian, P. Rai, E. Salazar, and L. Carin. Integrating features and similarities: flexible models for heterogeneous multiview data. In Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, pages 2757--2763. AAAI Press, 2015.
[26]
L. Lustberg and C. F. Reynolds. Depression and insomnia: questions of cause and effect. Sleep medicine reviews, 4(3):253--262, 2000.
[27]
J. Machajdik and A. Hanbury. Affective image classification using features inspired by psychology and art theory. In Proceedings of the 18th ACM international conference on Multimedia, pages 83--92. ACM, 2010.
[28]
T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781, 2013.
[29]
M. A. Milkie. Social comparisons, reflected appraisals, and mass media: The impact of pervasive beauty images on black and white girls' self-concepts. Social Psychology Quarterly, pages 190--210, 1999.
[30]
M. A. Moreno, A. Ton, E. Selkie, and Y. Evans. Secret society 123: understanding the language of self-harm on instagram. Journal of Adolescent Health, 58(1):78--84, 2016.
[31]
J. J. Muehlenkamp, L. Claes, L. Havertape, and P. L. Plener. International prevalence of adolescent non-suicidal self-injury and deliberate self-harm. Child and Adolescent Psychiatry and Mental Health, 6(1):1, 2012.
[32]
J. P. Pestian, P. Matykiewicz, M. Linn-Gust, B. South, O. Uzuner, J. Wiebe, K. B. Cohen, J. Hurdle, and C. Brew. Sentiment analysis of suicide notes: A shared task. Biomedical informatics insights, 5(Suppl. 1):3, 2012.
[33]
K. Petrie and R. Brook. Sense of coherence, self-esteem, depression and hopelessness as correlates of reattempting suicide. British Journal of Clinical Psychology, 31(3):293--300, 1992.
[34]
J. Robinson, G. Cox, E. Bailey, S. Hetrick, M. Rodrigues, S. Fisher, and H. Herrman. Social media and suicide prevention: a systematic review. Early Interv Psychiatry, 2015.
[35]
S. S. Rude, C. R. Valdez, S. Odom, and A. Ebrahimi. Negative cognitive biases predict subsequent depression. Cognitive Therapy and Research, 27(4):415--429, 2003.
[36]
A. Sadilek, H. A. Kautz, and V. Silenzio. Modeling spread of disease from social interactions. 2012.
[37]
S. Siersdorfer, E. Minack, F. Deng, and J. Hare. Analyzing and predicting sentiment of images on the social web. In Proceedings of the 18th ACM international conference on Multimedia, pages 715--718. ACM, 2010.
[38]
S. W. Stirman and J. W. Pennebaker. Word use in the poetry of suicidal and nonsuicidal poets. Psychosomatic Medicine, 63(4):517--522, 2001.
[39]
B. Thomee, D. A. Shamma, G. Friedland, B. Elizalde, K. Ni, D. Poland, D. Borth, and L.-J. Li. The new data and new challenges in multimedia research. arXiv preprint arXiv:1503.01817, 2015.
[40]
T. Tuytelaars and K. Mikolajczyk. Local invariant feature detectors: a survey. Foundations and trends® in computer graphics and vision, 3(3):177--280, 2008.
[41]
N. X. Vinh, J. Epps, and J. Bailey. Information theoretic measures for clusterings comparison: Variants, properties, normalization and correction for chance. JLMR, pages 2837--2854, 2010.
[42]
S. Wang, Y. Wang, J. Tang, C. Aggarwal, S. Ranganath, and H. Liu. Exploiting hierarchical structures for unsupervised feature selection. In Proceedings of the 2017 SIAM International Conference on Data Mining, 2017.
[43]
S. Wang, Y. Wang, J. Tang, K. Shu, S. Ranganath, and H. Liu. What your images reveal: Exploiting visual contents for point-of-interest recommendation. In Proceedings of the 26th International Conference on World Wide Web, 2017.
[44]
Y. Wang, Y. Hu, S. Kambhampati, and B. Li. Inferring sentiment from web images with joint inference on visual and social cues: A regulated matrix factorization approach. In Ninth International AAAI Conference on Web and Social Media, 2015.
[45]
Y. Wang and B. Li. Sentiment analysis for social media images. In Proceedings of the 2015 IEEE International Conference on Data Mining Workshop (ICDMW), pages 1584--1591. IEEE Computer Society, 2015.
[46]
Y. Wang, S. Wang, J. Tang, H. Liu, and B. Li. Unsupervised sentiment analysis for social media images. In Twenty-Fourth International Joint Conference on Artificial Intelligence, 2015.
[47]
Y. Wang, S. Wang, J. Tang, H. Liu, and B. Li. Ppp: Joint pointwise and pairwise image label prediction. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 6005--6013, 2016.
[48]
J. M. G. Williams and M. Williams. Cry of pain: Understanding suicide and self-harm. Penguin Group USA, 1997.
[49]
E. Yom-Tov, L. Fernandez-Luque, I. Weber, and S. P. Crain. Pro-anorexia and pro-recovery photo sharing: a tale of two warring tribes. Journal of medical Internet research, 14(6):e151, 2012.

Cited By

View all
  • (2025)Exploring self-harm on Twitter (X): Content moderation and its psychological effects on adolescentsOnline Journal of Communication and Media Technologies10.30935/ojcmt/1586715:1(e202503)Online publication date: 2025
  • (2025)Sentiment Analysis of #Meanspo Tweets: Humans vs. Automatic ClassificationsProceedings of the ACM on Human-Computer Interaction10.1145/37012079:1(1-26)Online publication date: 10-Jan-2025
  • (2024)Unveiling the "Toxic" World of #Meanspo: Understanding Users' Emerging Online Eating Disorder Practices in X/TwitterProceedings of the ACM on Human-Computer Interaction10.1145/36870618:CSCW2(1-27)Online publication date: 8-Nov-2024
  • Show More Cited By

Index Terms

  1. Understanding and Discovering Deliberate Self-harm Content in Social Media

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Other conferences
    WWW '17: Proceedings of the 26th International Conference on World Wide Web
    April 2017
    1678 pages
    ISBN:9781450349130

    Sponsors

    • IW3C2: International World Wide Web Conference Committee

    In-Cooperation

    Publisher

    International World Wide Web Conferences Steering Committee

    Republic and Canton of Geneva, Switzerland

    Publication History

    Published: 03 April 2017

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. mental health
    2. self-harm detection
    3. social media mining
    4. user modeling

    Qualifiers

    • Research-article

    Funding Sources

    • ARO
    • ONR

    Conference

    WWW '17
    Sponsor:
    • IW3C2

    Acceptance Rates

    WWW '17 Paper Acceptance Rate 164 of 966 submissions, 17%;
    Overall Acceptance Rate 1,899 of 8,196 submissions, 23%

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)293
    • Downloads (Last 6 weeks)37
    Reflects downloads up to 28 Feb 2025

    Other Metrics

    Citations

    Cited By

    View all
    • (2025)Exploring self-harm on Twitter (X): Content moderation and its psychological effects on adolescentsOnline Journal of Communication and Media Technologies10.30935/ojcmt/1586715:1(e202503)Online publication date: 2025
    • (2025)Sentiment Analysis of #Meanspo Tweets: Humans vs. Automatic ClassificationsProceedings of the ACM on Human-Computer Interaction10.1145/37012079:1(1-26)Online publication date: 10-Jan-2025
    • (2024)Unveiling the "Toxic" World of #Meanspo: Understanding Users' Emerging Online Eating Disorder Practices in X/TwitterProceedings of the ACM on Human-Computer Interaction10.1145/36870618:CSCW2(1-27)Online publication date: 8-Nov-2024
    • (2024)Scale-CoT: Integrating LLM with Psychiatric Scales for Analyzing Mental Health Issues on Social Media2024 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)10.1109/BIBM62325.2024.10822322(2651-2658)Online publication date: 3-Dec-2024
    • (2023)Towards targeted obfuscation of adversarial unsafe images using reconstruction and counterfactual super region attribution explainabilityProceedings of the 32nd USENIX Conference on Security Symposium10.5555/3620237.3620274(643-660)Online publication date: 9-Aug-2023
    • (2023)NSSI questionnaires revisited: A data mining approach to shorten the NSSI questionnairesPLOS ONE10.1371/journal.pone.028458818:4(e0284588)Online publication date: 21-Apr-2023
    • (2023)Forecasting National-Level Self-Harm Trends With Social NetworksIEEE Access10.1109/ACCESS.2023.328929511(64796-64814)Online publication date: 2023
    • (2023)Mental Health Analysis in Social Media Posts: A SurveyArchives of Computational Methods in Engineering10.1007/s11831-022-09863-z30:3(1819-1842)Online publication date: 3-Jan-2023
    • (2022)Estimating Mental Health Using Human-generated Big Data and Machine Learning人が生み出すビッグデータと機械学習によるメンタルヘルスの推定The Brain & Neural Networks10.3902/jnns.29.7829:2(78-94)Online publication date: 5-Jun-2022
    • (2022)Mind-proofing Your Phone: Navigating the Digital Minefield with GreaseTerminatorProceedings of the 27th International Conference on Intelligent User Interfaces10.1145/3490099.3511152(523-536)Online publication date: 22-Mar-2022
    • Show More Cited By

    View Options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Login options

    Figures

    Tables

    Media

    Share

    Share

    Share this Publication link

    Share on social media