skip to main content
10.1145/3038912.3052601acmotherconferencesArticle/Chapter ViewAbstractPublication PagesthewebconfConference Proceedingsconference-collections
research-article
Public Access

Regions, Periods, Activities: Uncovering Urban Dynamics via Cross-Modal Representation Learning

Published: 03 April 2017 Publication History

Abstract

With the ever-increasing urbanization process, systematically modeling people's activities in the urban space is being recognized as a crucial socioeconomic task. This task was nearly impossible years ago due to the lack of reliable data sources, yet the emergence of geo-tagged social media (GTSM) data sheds new light on it. Recently, there have been fruitful studies on discovering geographical topics from GTSM data. However, their high computational costs and strong distributional assumptions about the latent topics hinder them from fully unleashing the power of GTSM.
To bridge the gap, we present CrossMap, a novel cross-modal representation learning method that uncovers urban dynamics with massive GTSM data. CrossMap first employs an accelerated mode seeking procedure to detect spatiotemporal hotspots underlying people's activities. Those detected hotspots not only address spatiotemporal variations, but also largely alleviate the sparsity of the GTSM data. With the detected hotspots, CrossMap then jointly embeds all spatial, temporal, and textual units into the same space using two different strategies: one is reconstruction-based and the other is graph-based. Both strategies capture the correlations among the units by encoding their co-occurrence and neighborhood relationships, and learn low-dimensional representations to preserve such correlations. Our experiments demonstrate that CrossMap not only significantly outperforms state-of-the-art methods for activity recovery and classification, but also achieves much better efficiency.

References

[1]
H. Abdelhaq, C. Sengstock, and M. Gertz. Eventweet: Online localized event detection from twitter. PVLDB, 6(12):1326--1329, 2013.
[2]
D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent dirichlet allocation. Journal of Machine Learning Research, 3(1):993--1022, 2003.
[3]
M. A. Carreira-Perpinan. Acceleration strategies for gaussian mean-shift image segmentation. In CVPR, pages 1160--1167, 2006.
[4]
L. Chen and A. Roy. Event detection from flickr data through wavelet-based spatial analysis. In CIKM, pages 523--532, 2009.
[5]
Z. Cheng, J. Caverlee, K. Lee, and D. Z. Sui. Exploring millions of footprints in location sharing services. In ICWSM, pages 81--88, 2011.
[6]
E. Cho, S. A. Myers, and J. Leskovec. Friendship and mobility: user movement in location-based social networks. In KDD, pages 1082--1090, 2011.
[7]
D. Comaniciu and P. Meer. Mean shift: A robust approach toward feature space analysis. IEEE Trans. Pattern Anal. Mach. Intell., 24(5):603--619, 2002.
[8]
J. Cranshaw, R. Schwartz, J. I. Hong, and N. Sadeh. The livehoods project: Utilizing social media to understand the dynamics of a city. In ICWSM, pages 58--65, 2012.
[9]
M. Daggitt, A. Noulas, B. Shaw, and C. Mascolo. Tracking urban activity growth globally with big location data. CoRR, abs/1512.05819, 2015.
[10]
W. Feng, C. Zhang, W. Zhang, J. Han, J. Wang, C. Aggarwal, and J. Huang. Streamcube: hierarchical spatio-temporal hashtag clustering for event exploration over the twitter stream. In ICDE, pages 1561--1572, 2015.
[11]
V. Frias-Martinez, V. Soto, H. Hohwald, and E. Frias-Martinez. Characterizing urban landscapes using geolocated tweets. In SocialCom/PASSAT, pages 239--248, 2012.
[12]
H. Gui, J. Liu, F. Tao, M. Jiang, B. Norick, and J. Han. Large-scale embedding learning in heterogeneous event data. In ICDM, 2016.
[13]
R. A. Harshman. Foundations of the PARAFAC procedure: Models and conditions for an "explanatory" multi-modal factor analysis. UCLA Working Papers in Phonetics, 16(1):84, 1970.
[14]
T. Hofmann. Probabilistic latent semantic indexing. In SIGIR, pages 50--57, 1999.
[15]
L. Hong, A. Ahmed, S. Gurumurthy, A. J. Smola, and K. Tsioutsiouliklis. Discovering geographical topics in the twitter stream. In WWW, pages 769--778, 2012.
[16]
D. Hristova, M. J. Williams, M. Musolesi, P. Panzarasa, and C. Mascolo. Measuring urban social diversity using interconnected geo-social networks. In WWW, pages 21--30, 2016.
[17]
R. Jurdak, K. Zhao, J. Liu, M. AbouJaoude, M. Cameron, and D. Newth. Understanding human mobility from twitter. PloS one, 10(7):e0131469, 2015.
[18]
W. Kang, A. K. H. Tung, W. Chen, X. Li, Q. Song, C. Zhang, F. Zhao, and X. Zhou. Trendspedia: An internet observatory for analyzing and visualizing the evolving web. In ICDE, pages 1206--1209, 2014.
[19]
C. C. Kling, J. Kunegis, S. Sizov, and S. Staab. Detecting non-gaussian geographical topics in tagged photo collections. In WSDM, pages 603--612, 2014.
[20]
J. Krumm and E. Horvitz. Eyewitness: Identifying local events via space-time signals in twitter feeds. In SIGSPATIAL, 2015.
[21]
R. Lee, S. Wakamiya, and K. Sumiya. Discovery of unusual regional social activities using geo-tagged microblogs. World Wide Web, 14(4):321--349, 2011.
[22]
K. Leetaru, S. Wang, G. Cao, A. Padmanabhan, and E. Shook. Mapping the global twitter heartbeat: The geography of twitter. First Monday, 18(5), 2013.
[23]
L. v. d. Maaten and G. Hinton. Visualizing data using t-sne. Journal of Machine Learning Research, 9(85):2579--2605, 2008.
[24]
Q. Mei, C. Liu, H. Su, and C. Zhai. A probabilistic approach to spatiotemporal theme pattern mining on weblogs. In WWW, pages 533--542, 2006.
[25]
T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. Distributed representations of words and phrases and their compositionality. In NIPS, pages 3111--3119, 2013.
[26]
A. Noulas, C. Mascolo, and E. Frias-Martinez. Exploiting foursquare and cellular data to infer user activity in urban environments. In MDM, pages 167--176, 2013.
[27]
A. Noulas, S. Scellato, C. Mascolo, and M. Pontil. An empirical study of geographic user activity patterns in foursquare. In ICWSM, pages 570--573, 2011.
[28]
A. Noulas, S. Scellato, C. Mascolo, and M. Pontil. Exploiting semantic annotations for clustering geographic areas and users in location-based social networks. In ICWSM, 2011.
[29]
B. Perozzi, R. Al-Rfou, and S. Skiena. Deepwalk: Online learning of social representations. In KDD, pages 701--710, 2014.
[30]
T. Sakaki, M. Okazaki, and Y. Matsuo. Earthquake shakes twitter users: real-time event detection by social sensors. In WWW, pages 851--860, 2010.
[31]
S. Sizov. Geofolk: latent spatial semantics in web 2.0 social media. In WSDM, pages 281--290, 2010.
[32]
J. Tang, M. Qu, and Q. Mei. Pte: Predictive text embedding through large-scale heterogeneous text networks. In KDD, pages 1165--1174, 2015.
[33]
J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei. Line: Large-scale information network embedding. In WWW, pages 1067--1077, 2015.
[34]
C. Wang, J. Wang, X. Xie, and W.-Y. Ma. Mining geographic knowledge using location aware topic model. In GIR, pages 65--70, 2007.
[35]
Z. Yin, L. Cao, J. Han, C. Zhai, and T. S. Huang. Geographical topic discovery and comparison. In WWW, pages 247--256, 2011.
[36]
Q. Yuan, G. Cong, Z. Ma, A. Sun, and N. M. Thalmann. Who, where, when and what: discover spatio-temporal topics for twitter users. In KDD, pages 605--613, 2013.
[37]
Q. Yuan, W. Zhang, C. Zhang, X. Geng, G. Cong, and J. Han. Pred: Periodic region detection for mobility modeling of social media users. In WSDM, 2017.
[38]
C. Zhang, J. Han, L. Shou, J. Lu, and T. F. L. Porta. Splitter: Mining fine-grained sequential patterns in semantic trajectories. PVLDB, 7(9):769--780, 2014.
[39]
C. Zhang, K. Zhang, Q. Yuan, L. Zhang, T. Hanratty, and J. Han. Gmove: Group-level mobility modeling using geo-tagged social media. In KDD, pages 1305--1314, 2016.
[40]
C. Zhang, G. Zhou, Q. Yuan, H. Zhuang, Y. Zheng, L. Kaplan, S. Wang, and J. Han. Geoburst: Real-time local event detection in geo-tagged tweet streams. In SIGIR, pages 513--522, 2016.
[41]
K. Zhang, Q. Jin, K. Pelechrinis, and T. Lappas. On the importance of temporal dynamics in modeling urban activity. In UrbComp, 2013.
[42]
Y. Zheng. Methodologies for cross-domain data fusion: An overview. IEEE transactions on big data, 1(1):16--34, 2015.
[43]
Y. Zheng, L. Capra, O. Wolfson, and H. Yang. Urban computing: Concepts, methodologies, and applications. ACM TIST, 5(3):38:1--38:55, 2014.

Cited By

View all
  • (2025)ÇİZGE ÖĞRENMEDE ÇİZGE SİNİR AĞLARIİstanbul Ticaret Üniversitesi Teknoloji ve Uygulamalı Bilimler Dergisi10.56809/icujtas.14425047:2(17-56)Online publication date: 28-Feb-2025
  • (2024)MuseCLProceedings of the Thirty-Third International Joint Conference on Artificial Intelligence10.24963/ijcai.2024/834(7536-7544)Online publication date: 3-Aug-2024
  • (2024)Survey of Federated Learning Models for Spatial-Temporal Mobility ApplicationsACM Transactions on Spatial Algorithms and Systems10.1145/366608910:3(1-39)Online publication date: 1-Jun-2024
  • Show More Cited By

Index Terms

  1. Regions, Periods, Activities: Uncovering Urban Dynamics via Cross-Modal Representation Learning

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Other conferences
    WWW '17: Proceedings of the 26th International Conference on World Wide Web
    April 2017
    1678 pages
    ISBN:9781450349130

    Sponsors

    • IW3C2: International World Wide Web Conference Committee

    In-Cooperation

    Publisher

    International World Wide Web Conferences Steering Committee

    Republic and Canton of Geneva, Switzerland

    Publication History

    Published: 03 April 2017

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. activity
    2. geographical topic
    3. representation learning
    4. social media
    5. spatiotemporal data
    6. twitter
    7. urban dynamics

    Qualifiers

    • Research-article

    Funding Sources

    Conference

    WWW '17
    Sponsor:
    • IW3C2

    Acceptance Rates

    WWW '17 Paper Acceptance Rate 164 of 966 submissions, 17%;
    Overall Acceptance Rate 1,899 of 8,196 submissions, 23%

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)292
    • Downloads (Last 6 weeks)30
    Reflects downloads up to 02 Mar 2025

    Other Metrics

    Citations

    Cited By

    View all
    • (2025)ÇİZGE ÖĞRENMEDE ÇİZGE SİNİR AĞLARIİstanbul Ticaret Üniversitesi Teknoloji ve Uygulamalı Bilimler Dergisi10.56809/icujtas.14425047:2(17-56)Online publication date: 28-Feb-2025
    • (2024)MuseCLProceedings of the Thirty-Third International Joint Conference on Artificial Intelligence10.24963/ijcai.2024/834(7536-7544)Online publication date: 3-Aug-2024
    • (2024)Survey of Federated Learning Models for Spatial-Temporal Mobility ApplicationsACM Transactions on Spatial Algorithms and Systems10.1145/366608910:3(1-39)Online publication date: 1-Jun-2024
    • (2024)SpherE: Expressive and Interpretable Knowledge Graph Embedding for Set RetrievalProceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval10.1145/3626772.3657910(2629-2634)Online publication date: 10-Jul-2024
    • (2024)Crime Prediction Using Spatial-Temporal Synchronous Graph Convolutional Networks2024 11th International Conference on Soft Computing & Machine Intelligence (ISCMI)10.1109/ISCMI63661.2024.10851671(129-133)Online publication date: 22-Nov-2024
    • (2024)Enhancing App Usage Prediction Accuracy With GCN-Transformer Model and Meta-Path ContextIEEE Access10.1109/ACCESS.2024.337239712(53031-53044)Online publication date: 2024
    • (2024)Exploring trajectory embedding via spatial-temporal propagation for dynamic region representationsInformation Sciences10.1016/j.ins.2024.120516(120516)Online publication date: Mar-2024
    • (2024)Indoor Uncertain Semantic Trajectory Similarity JoinJournal of Computer Science and Technology10.1007/s11390-023-2418-439:6(1441-1465)Online publication date: 1-Nov-2024
    • (2023)Understanding Urban Economic Status through GNN-based Urban Representation Learning Using Mobility DataProceedings of the 1st ACM SIGSPATIAL International Workshop on Advances in Urban-AI10.1145/3615900.3628786(71-80)Online publication date: 13-Nov-2023
    • (2023)Optimal Pricing in a Single Server SystemACM Transactions on Modeling and Performance Evaluation of Computing Systems10.1145/36072528:4(1-32)Online publication date: 11-Aug-2023
    • Show More Cited By

    View Options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Login options

    Figures

    Tables

    Media

    Share

    Share

    Share this Publication link

    Share on social media