skip to main content
10.1145/3041021.3054935acmotherconferencesArticle/Chapter ViewAbstractPublication PagesthewebconfConference Proceedingsconference-collections
research-article

Risk Quantification of Metabolic Syndrome with Quantum Particle Swarm Optimisation

Published: 03 April 2017 Publication History

Abstract

Metabolic syndrome (MetS) is a combination of interrelated risk factors associated with an increased risk of developing type II diabetes Mellitus (T2DM), stroke and cardiovascular diseases (CVD). The economic, social and medical burden coupled with increased morbidity of the aforementioned diseases makes their prevention an active research area. Currently, the traditional method of MetS diagnosis is based on dichotomised definitions provided by various expert health organisations. However, this method is laced with the indetermination of MetS in individuals with borderline risk factor values due to a binary diagnosis and the assumption of equal weighting for all risk factors during diagnosis. The purpose of this paper is to examine the use of the MetS areal similarity degree risk analysis based on weighted radar charts comprising of diagnostic thresholds and risk factor results of an individual. We further enhance this risk quantification method by applying quantum particle swarm optimization to derive the weights. The proposed risk quantification was carried out using a sample of 528 individuals from an examination survey conducted between 2007 and 2014 in Serbia. The results are evaluated with the traditional dichotomised method of MetS diagnosis, in this case the joint interim statement (JIS). The results obtained showed that the proposed risk quantification method outperformed the dichotomised method at diagnosing MetS even in individuals who present risk factor examination values at the threshold borderlines.

References

[1]
W. Ahrens, L. A. Moreno, S. Marild, D. Molnar, A. Siani, S. De Henauw, J. Bohmann, K. Gunther, C. Hadjigeorgiou, L. Iacoviello, L. Lissner, T. Veidebaum, H. Pohlabeln, and I. Pigeot. Metabolic syndrome in young children: definitions and results of the idefics study. Int J Obes (Lond), 38 Suppl 2:S4--14, Sep 2014.
[2]
M. S. Al-Zahrani, N. F. Bissada, and E. A. Borawski. Obesity and periodontal disease in young, middle-aged, and older adults. Journal of periodontology, 74(5):610--615, 2003.
[3]
K. Alberti, R. H. Eckel, S. M. Grundy, P. Z. Zimmet, J. I. Cleeman, K. A.Donato, J.-C. Fruchart, W. P. T. James, C. M. Loria, and S. C. Smith. Harmonizing the metabolic syndrome a joint interim statement of the international diabetes federation task force on epidemiology and prevention; national heart, lung, and blood institute; american heart association; world heart federation; international atherosclerosis society; and international association for the study of obesity. Circulation, 120(16):1640--1645, 2009.
[4]
K. G. M. M. Alberti, P. Zimmet, and J. Shaw. Metabolic syndrome-new world-wide definition. a consensus statement from the international diabetes federation. Diabetic medicine, 23(5):469--480, 2006.
[5]
K. G. M. M. Alberti and P. f. Zimmet.Definition, diagnosis and classification of diabetes mellitus and its complications. part 1: diagnosis and classification of diabetes mellitus. provisional report of a who consultation. Diabetic medicine, 15(7):539--553, 1998.
[6]
B. Balkau, M. A. Charles, T. Drivsholm, K. Borch-Johnsen, N. Wareham, J. S.Yudkin, R. Morris, I. Zavaroni, R. van Dam, E. Feskins, R. Gabriel, M. Diet, P. Nilsson, and B. Hedblad. European group for the study of insulin resistance (egir). frequency of the who metabolic syndrome in european cohorts, and an alternative definition of an insulin resistance syndrome. Diabetes Metabolism, 20, 2002.
[7]
A. Chu, R. Kalaba, and K. Spingarn. A comparison of two methods for determining the weights of belonging to fuzzy sets.Journal of Optimization theory and applications,27(4):531--538, 1979.
[8]
R. Eberhart, P. Simpson, and R. Dobbins. Computational intelligence PC tools. Academic Press Professional, Inc., 1996.
[9]
S. M. Grundy, H. B. Brewer, J. I. Cleeman, S. C. Smith, C. Lenfant, and f. t. C. Participants. Definition of metabolic syndrome: Report of the national heart, lung, and blood institute/american heart association conference on scientific issues related to definition.Circulation, 109(3):433--438, 2004.
[10]
S. M. Grundy, J. I. Cleeman, S. R. Daniels, K. A. Donato, R. H. Eckel, B. A.Franklin, D. J. Gordon, R. M. Krauss, P. J. Savage, S. C. Smith, J. A.Spertus, and F. Costa.Diagnosis and management of the metabolic syndrome. An American Heart Association/National Heart, Lung, and BloodInstitute Scientific Statement, 112(17):2735--2752, 2005.
[11]
T. Liu, L. Jiao, W. Ma, J. Ma, and R. Shang. A new quantum-behaved particle swarm optimization based on culturalevolution mechanism for multiobjective problems. Knowledge-Based Systems, 101:90--99, 2016.
[12]
J. Olza, M. Gil-Campos, R. Leis, G. Bueno, C. Aguilera, M. Valle, R. Canete, R. Tojo, L. Moreno, and A. Gil. Presence of the metabolic syndrome in obese children at prepubertal age. Annals of Nutrition and Metabolism, 58(4):343--350, 2011.
[13]
W. H. Organisation. Global report on diabetes. Technical report, 2016.
[14]
W. H. Organization. Definition, diagnosis and classification of diabetes mellitus and itscomplications: report of a who consultation. part 1, diagnosis and classification of diabetes mellitus. WHO, Geneva, 1999.
[15]
P. I. Parikka, M. Laakso, J. G. Eriksson, J. G. Lakka, J. Lindstrom,M. Pletonen, S. Aunola, S. A. Kiukaanneimi, M. Uusitupa, and J. Tuomilehto. Leisure-time physical activity and the metabolic syndrome in the finnish diabetes prevention study. Diabetes Care, 33, 2010.
[16]
M. S. Pepe. The statistical evaluation of medical tests for classification and prediction. Oxford University Press, USA, 2003.
[17]
G. M. Reaven.Role of insulin resistance in human disease. Diabetes, 37, 1988.
[18]
T. L. Saaty. Analytic hierarchy process. In Encyclopedia of operations research and management science,pages 52--64. Springer, 2013.
[19]
T. L. Saaty and L. G. Vargas.Comparison of eigenvalue, logarithmic least squares and least squares methods in estimating ratios.Mathematical modelling, 5(5):309--324, 1984.
[20]
J. Sangjin, J. Yu Mi, S. Sang-Oh, C. Yeon-Jung, and Y. Chan-Hyun. A novel model for metabolic syndrome risk quantification based on areal similarity degree. IEEE Transactions on Biomedical Engineering, 61(3):665--679,2014.
[21]
T. Shah, S. S. Jonnalagadda, J. R. Kicklighter, S. Diwan, and B. L. Hopkins. Prevalence of metabolic syndrome risk factors among young adult asian indians. Journal of immigrant health, 7(2):117--125, 2005.
[22]
R. Simmons, K. Alberti, E. Gale, S. Colagiuri, J. Tuomilehto, Q. Qiao, A. Ramachandran, N. Tajima, I. B. Mirchov, and A. Ben-Nakhi. The metabolic syndrome: useful concept or clinical tool? report of a who expert consultation. Diabetologia, 53(4):600--605, 2010.
[23]
I. Soldatovic, R. Vukovic, D. Culafic, M. Gajic, and V. Dimitrijevic-Sreckovic. sims score: Simple method for quantifying metabolic syndrome. Plos One, 11(1):10, 2016.
[24]
B. Srdjevic and Z. Srdjevic. Bi-criteria evolution strategy in estimating weights from the ahp ratio-scale matrices. Applied Mathematics and Computation, 218(4):1254--1266, 2011.
[25]
J. Sun, B. Feng, and W. Xu. Particle swarm optimization with particles having quantum behavior. In Evolutionary Computation, 2004. CEC2004. Congress on, volume 1, pages 325--331. IEEE, 2004.
[26]
N. G. Thaker, T. N. Ali, M. E. Porter, T. W. Feeley, R. S. Kaplan, and S. J.Frank. Communicating value in health care using radar charts: A case study of prostate cancer. Journal of Oncology Practice, 12(9):813--820, 2016.
[27]
S. Yang and M. Wang.A quantum particle swarm optimization. In Evolutionary Computation, 2004. CEC2004. Congress on, volume 1, pages 320--324. IEEE, 2004.
[28]
H. Zhang, Y. Hou, J. Zhang, X. Qi, and F. Wang. A new method for nondestructive quality evaluation of the resistance spot welding based on the radar chart method and the decision tree classifier. The International Journal of Advanced Manufacturing Technology, 78(5--8):841--851, 2015.

Cited By

View all
  • (2022)Machine Learning Approach for Metabolic Syndrome Diagnosis Using Explainable Data-Augmentation-Based ClassificationDiagnostics10.3390/diagnostics1212311712:12(3117)Online publication date: 10-Dec-2022
  • (2019)Diagnosing Metabolic Syndrome Using Genetically Optimised Bayesian ARTMAPIEEE Access10.1109/ACCESS.2018.28802247(8437-8453)Online publication date: 2019
  • (2019)Metabolic Syndrome Risk Evaluation Based on VDR Polymorphisms and Neural Networks10th International Conference on Theory and Application of Soft Computing, Computing with Words and Perceptions - ICSCCW-201910.1007/978-3-030-35249-3_126(943-949)Online publication date: 20-Nov-2019

Index Terms

  1. Risk Quantification of Metabolic Syndrome with Quantum Particle Swarm Optimisation

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Other conferences
    WWW '17 Companion: Proceedings of the 26th International Conference on World Wide Web Companion
    April 2017
    1738 pages
    ISBN:9781450349147

    Sponsors

    • IW3C2: International World Wide Web Conference Committee

    In-Cooperation

    Publisher

    International World Wide Web Conferences Steering Committee

    Republic and Canton of Geneva, Switzerland

    Publication History

    Published: 03 April 2017

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. areal similarity degree
    2. metabolic syndrome
    3. quantum particle swarm optimisation

    Qualifiers

    • Research-article

    Conference

    WWW '17
    Sponsor:
    • IW3C2

    Acceptance Rates

    WWW '17 Companion Paper Acceptance Rate 164 of 966 submissions, 17%;
    Overall Acceptance Rate 1,899 of 8,196 submissions, 23%

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)10
    • Downloads (Last 6 weeks)3
    Reflects downloads up to 03 Mar 2025

    Other Metrics

    Citations

    Cited By

    View all
    • (2022)Machine Learning Approach for Metabolic Syndrome Diagnosis Using Explainable Data-Augmentation-Based ClassificationDiagnostics10.3390/diagnostics1212311712:12(3117)Online publication date: 10-Dec-2022
    • (2019)Diagnosing Metabolic Syndrome Using Genetically Optimised Bayesian ARTMAPIEEE Access10.1109/ACCESS.2018.28802247(8437-8453)Online publication date: 2019
    • (2019)Metabolic Syndrome Risk Evaluation Based on VDR Polymorphisms and Neural Networks10th International Conference on Theory and Application of Soft Computing, Computing with Words and Perceptions - ICSCCW-201910.1007/978-3-030-35249-3_126(943-949)Online publication date: 20-Nov-2019

    View Options

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Figures

    Tables

    Media

    Share

    Share

    Share this Publication link

    Share on social media