skip to main content
10.1145/3060403.3066871acmconferencesArticle/Chapter ViewAbstractPublication PagesglsvlsiConference Proceedingsconference-collections
research-article

Bioinspired Programming of Resistive Memory Devices for Implementing Spiking Neural Networks

Published: 10 May 2017 Publication History

Abstract

In this work, we will focus on the role that non-volatile resistive memory technologies (RRAM) can play for modeling key features of biological synapses. We will present an architecture and a reading/programming strategy to emulate both Short and Long Term Plasticity (STP, LTP) rules using non-volatile OxRAM arrays. A visual-pattern extraction application is discussed using spiking neural networks. We demonstrated that Long-Term plasticity allows the neural networks to learn patterns and the Short Term plasticity allows to improve accuracy (reduction of the false positive events generated by white noise in the input data) in presence of significant background noise in the input data.

References

[1]
G.W. Burr, R.M. Shelby, C. di Nolfo, J. Jang, R. Shenoy, P. Narayanan, K. Virwani, E. Giacometti, B. Kurdi, H. Hwang -- Experimental demonstration and tolerancing of a large--scale neural network (165,000 synapses), using phase--change memory as the synaptic weight element? IEDM Technical Digest, p. 29.5 (2014).
[2]
M. Suri and V. Parmar "Exploiting Intrinsic Variability of Filamentary Resistive Memory for Extreme Learning Machine Architectures", IEEE Trans. on Nanotechnology vol. 14, no. 6, p. 963 (2015).
[3]
M. Suri, D. Querlioz, O. Bichler, G. Palma, E. Vianello, D. Vuillaume, C. Gamrat, B. De Salvo, "Bio-Inspired Stochastic Computing Using Binary CBRAM Synapses", IEEE Trans. on Electron Device vol. 60, issue 7, p. 2402 (2013).
[4]
V. Milo, G. Pedretti, R. Carboni, A. Calderoni, N. Ramaswamy, S. Ambrogio and D. Ielmini "Demonstration of hybrid CMOS/RRAM neural networks with spike time/rate-dependent plasticity", IEDM Technical Digest, p. 16.8 (2016).
[5]
D. Querlioz, O. Bichler, A. F. Vincent, C. Gamrat, "Bioinspired Programming of Memory Devices for Implementing an Inference Engine", Proceedings of the IEEE vol.103, issue 8 (2015).
[6]
S. Sills, S. Yasuda, J. Strand, A. Calderoni, K. Aratani, A. Johnson, N. Ramaswamy "A copper ReRAM cell for Storage Class Memory applications", VLSI Technical Symp. (2014).
[7]
Z. Wei, K. Eriguchi, S. Muraoka, K. Katayama, R. Yasuhara, K. Kawai, Y. Ikeda, M. Yoshimura, Y. Hayakawa, K. Shimakawa, T. Mikawa, S. Yoneda "Distribution projecting the reliability for 40 nm ReRAM and beyond based on stochastic differential equation", IEDM Technical Digest, p. 7.7 (2015).
[8]
G.Q. Bi, M.M. Poo "Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type", J Neurosci. Vol. 18, issue 24 (1998).
[9]
M.-V. Tsodyks and H. Markram, "The neural code between neocortical pyramidal neurons depends on neurotransmitter release"probability", in Proc. Natl. Acad. Sci. vol. 94 no. 2 (1997).
[10]
A. Grossi, E. Nowak, C. Zambelli, C. Pellissier, S. Bernasconi, G. Cibrario, K. El Hajjam, R. Crochemore, J. F. Nodin, P. Olivo, L. Perniola, "Fundamental variability limits of filament-based RRAM", IEDM Technical Digest, p. 4.7 (2016).
[11]
E. Vianello, O. Thomas, G. Molas, O. Turkyilmaz, N. Jovanović, D. Garbin, G. Palma, M. Alayan, C. Nguyen, J. Coignus, B. Giraud, T. Benoist, M. Reyboz, A. Toffoli, C. Charpin, F. Clermidy, L. Perniola, "Resistive Memories for Ultra-Low-Power embedded computing design", IEDM Technical Digest, p. 6.3 (2014).
[12]
D. Garbin, E. Vianello, O. Bichler, M. Azzaz, Q. Rafhay, P. Candelier, C. Gamrat, G. Ghibaudo, B. DeSalvo, L. Perniola "On the impact of OxRAM-based synapses variability on convolutional neural networks performance", NANOARCH p.193 (2015).
[13]
J. Bill, R. Legenstein "A compound memristive synapse model for statistical learning through STDP in spiking neural networks", Front. Neurosci. 8, 412 (2014)
[14]
D. Garbin, E. Vianello, O. Bichler, Q. Rafhay, C. Gamrat, G. Ghibaudo, B. De Salvo and L. Perniola "HfO2-Based OxRAM Devices as Synapses for Convolutional Neural Networks", IEEE Trans. on Electron Device vol. 68, issue 8, p. 2494 (2015).
[15]
D. Roclin, O. Bichler, C. Gamrat, J.-O. Klein -- Sneak paths effects in CBRAM memristive devices arrays for spiking neural networks?, NANOARCH (2014).
[16]
T. Werner, E. Vianello, O. Bichler, A. Grossi, E. Nowak, J. -F. Nodin, B. Yvert, B. De Salvo, L. Perniola "Experimental demonstration of short and long term synaptic plasticity using OxRAM multi k-bit arrays for reliable detection in highly noisy input data", IEDM Technical Digest, p. 16.6 (2016).
[17]
O. Bichler, D. Querlioz, S. Thorpe, J. Bourgoin, and C. Gamrat, "Unsupervised features extraction from asynchronous silicon retina through spike-timing-dependent plasticity", in Proc. IJCNN, pp. 859--866 (2011).
[18]
O. Bichler, D. Querlioz, S.J. Thorpe, J.-P. Bourgoind and C. Gamrat, "Extraction of temporally correlated features from dynamic vision sensors with spike-timing-dependent plasticity", Neural Networks 32 (2012).
[19]
P. Lichtsteiner, C. Posch, and T. Delbruck, "A 128 × 128 120 dB 15's latency asynchronous temporal contrast vision sensor", IEEE J. SolidState Circuits, vol. 43, no. 2, pp. 566--576, (2008)
[20]
M. Suri, O. Bichler, D. Querlioz, O. Cueto, L. Perniola, V. Sousa, D. Vuillaume, C. Gamrat, B. DeSalvo "Phase change memory as synapse for ultra-dense neuromorphic systems: Application to complex visual pattern extraction", IEDM Technical Digest, p. 4.4 (2011).

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
GLSVLSI '17: Proceedings of the Great Lakes Symposium on VLSI 2017
May 2017
516 pages
ISBN:9781450349727
DOI:10.1145/3060403
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 10 May 2017

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. artificial synapses
  2. long-term plasticity
  3. rram
  4. short-term plasticity
  5. spiking neural networks
  6. unsupervised learning

Qualifiers

  • Research-article

Conference

GLSVLSI '17
Sponsor:
GLSVLSI '17: Great Lakes Symposium on VLSI 2017
May 10 - 12, 2017
Alberta, Banff, Canada

Acceptance Rates

GLSVLSI '17 Paper Acceptance Rate 48 of 197 submissions, 24%;
Overall Acceptance Rate 312 of 1,156 submissions, 27%

Upcoming Conference

GLSVLSI '25
Great Lakes Symposium on VLSI 2025
June 30 - July 2, 2025
New Orleans , LA , USA

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 210
    Total Downloads
  • Downloads (Last 12 months)5
  • Downloads (Last 6 weeks)0
Reflects downloads up to 03 Mar 2025

Other Metrics

Citations

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media