skip to main content

Algorithm 977: A QR--Preconditioned QR SVD Method for Computing the SVD with High Accuracy

Published:14 July 2017Publication History
Skip Abstract Section

Abstract

A new software for computing the singular value decomposition (SVD) of real or complex matrices is proposed. The method implemented in the code xGESVDQ is essentially the QR SVD algorithm available as xGESVD in LAPACK. The novelty is an extra step, the QR factorization with column (or complete row and column) pivoting, also already available in LAPACK as xGEQP3. For experts in matrix computations, the combination of the QR factorization and an SVD computation routine is not new. However, what seems to be new and important for applications is that the resulting procedure is numerically superior to xGESVD and that it is capable of reaching the accuracy of the Jacobi SVD. Further, when combined with pivoted Cholesky factorization, xGESVDQ provides numerically accurate and fast solvers (designated as xPHEVC, xPSEVC) for the Hermitian positive definite eigenvalue problem. For instance, using accurately computed Cholesky factor, xPSEVC computes all eigenvalues of the 200 × 200 Hilbert matrix (whose spectral condition number is greater that 10300) to nearly full machine precision. Furthermore, xGESVDQ can be used for accurate spectral decomposition of general (indefinite) Hermitian matrices.

Skip Supplemental Material Section

Supplemental Material

References

  1. E. Anderson, Z. Bai, C. Bischof, L. S. Blackford, J. Demmel, J. J. Dongarra, J. Du Croz, S. Hammarling, A. Greenbaum, A. McKenney, and D. Sorensen. 1999. LAPACK Users’ Guide (3rd ed.). Society for Industrial and Applied Mathematics, Philadelphia, PA. Google ScholarGoogle ScholarCross RefCross Ref
  2. J. Barlow. 2002. More accurate bidiagonal reduction for computing the singular value decomposition. SIAM Journal on Matrix Analysis and Applications 23, 761--798. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. J. Barlow and J. Demmel. 1990. Computing accurate eigensystems of scaled diagonally dominant matrices. SIAM Journal on Numerical Analysis 27, 3, 762--791. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. J. L. Barlow, N. Bosner, and Z. Drmač. 2005. A new stable bidiagonal reduction algorithm. Linear Algebra and Its Applications 397, 35--84. Google ScholarGoogle ScholarCross RefCross Ref
  5. M. Bečka, G. Okša, and M. Vajteršic. 2015. New dynamic orderings for the parallel one-sided block-Jacobi SVD algorithm. Parallel Processing Letters 25, 1550003-1--1550003-19.Google ScholarGoogle ScholarCross RefCross Ref
  6. C. H. Bischof and G. Quintana-Orti. 1998a. Algorithm 782: Codes for rank-revealing QR factorizations of dense matrices. ACM Transactions on Mathematical Software 24, 2, 254--257. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. C. H. Bischof and G. Quintana-Orti. 1998b. Computing rank-revealing QR factorizations of dense matrices. ACM Transactions on Mathematical Software 24, 2, 226--253. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. N. Bosner and Z. Drmač. 2005. On accuracy properties of one-sided bidiagonalization algorithm and its applications. In Applied Mathematics and Scientific Computing, Z. Drmač, M. Marušić, and Z. Tutek, (Eds.). Springer, 141--150. Google ScholarGoogle ScholarCross RefCross Ref
  9. P. A. Businger and G. H. Golub. 1965. Linear least squares solutions by householder transformations. Numerische Mathematik 7, 269--276. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. T. F. Chan. 1982. An improved algorithm for computing the singular value decomposition. ACM Transactions on Mathematical Software 8, 72--83. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. A. J. Cox and N. J. Higham. 1998. Stability of Householder QR factorization for weighted least squares problems. In Numerical Analysis (Dundee). Pitman Research Notes in Mathematics, Vol. 380. Longman, Harlow, England, 57--73.Google ScholarGoogle Scholar
  12. J. Demmel. 1989. On Floating Point Errors in Cholesky. LAPACK Working Note 14. Computer Science Department, University of Tennessee.Google ScholarGoogle Scholar
  13. J. Demmel. 1997. Applied Numerical Linear Algebra. SIAM. Google ScholarGoogle ScholarCross RefCross Ref
  14. J. Demmel. 1999. Accurate singular value decompositions of structured matrices. SIAM Journal on Matrix Analysis and Applications 21, 2, 562--580. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. J. Demmel, L. Grigori, M. Gu, and H. Xiang. 2015. Communication avoiding rank revealing QR factorization with column pivoting. SIAM Journal on Matrix Analysis and Applications 36, 1, 55--89. Google ScholarGoogle ScholarCross RefCross Ref
  16. J. Demmel, M. Gu, S. Eisenstat, I. Slapničar, K. Veselić, and Z. Drmač. 1999. Computing the singular value decomposition with high relative accuracy. Linear Algebra and Its Applications 299, 21--80. Google ScholarGoogle ScholarCross RefCross Ref
  17. J. Demmel and W. Kahan. 1990. Accurate singular values of bidiagonal matrices. SIAM Journal on Scientific and Statistical Computing 11, 5, 873--912. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. J. Demmel and K. Veselić. 1992. Jacobi’s method is more accurate than QR. SIAM Journal on Matrix Analysis and Applications 13, 4, 1204--1245. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. F. M. Dopico, J. M. Molera, and J. Moro. 2003. An orthogonal high relative accuracy algorithm for the symmetric eigenproblem. SIAM Journal on Matrix Analysis and Applications 25, 2, 301--351. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Z. Drmač. 1994. Computing the Singular and the Generalized Singular Values. Ph.D. Dissertation, Lehrgebiet Mathematische Physik, Fernuniversität Hagen, Germany.Google ScholarGoogle Scholar
  21. Z. Drmač. 1997. Implementation of Jacobi rotations for accurate singular value computation in floating point arithmetic. SIAM Journal on Scientific Computing 18, 1200--1222. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Z. Drmač. 1999. A posteriori computation of the singular vectors in a preconditioned Jacobi SVD algorithm. IMA Journal of Numerical Analysis 19, 191--213. Google ScholarGoogle ScholarCross RefCross Ref
  23. Z. Drmač. 2000. On principal angles between subspaces of Euclidean space. SIAM Journal on Matrix Analysis and Applications 22, 173--194. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Z. Drmač. 2015. SVD of Hankel matrices in Vandermonde-Cauchy product form. Electronic Transactions on Numerical Analysis 44, 593--623.Google ScholarGoogle Scholar
  25. Z. Drmač. 2016. xGESVDQ: A Software Implementation of the QR--Preconditioned QR SVD Method for Computing the Singular Value Decomposition User Guide. Technical Report. Department of Mathematics, Faculty of Science, University of Zagreb, Croatia.Google ScholarGoogle Scholar
  26. Z. Drmač and Z. Bujanović. 2008. On the failure of rank-revealing QR factorization software—a case study. ACM Transactions on Mathematical Software 35, 2, 12:1--12:28.Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Z. Drmač and K. Veselić. 2000. Approximate eigenvectors as preconditioner. Linear Algebra and Its Applications 309, 13, 191--215. Google ScholarGoogle ScholarCross RefCross Ref
  28. Z. Drmač and K. Veselić. 2008a. New fast and accurate Jacobi SVD algorithm: I. SIAM Journal on Matrix Analysis and Applications 29, 4, 1322--1342. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Z. Drmač and K. Veselić. 2008b. New fast and accurate Jacobi SVD algorithm: II. SIAM Journal on Matrix Analysis and Applications 29, 4, 1343--1362. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. J. A. Duersch and M. Gu. 2015. True BLAS-3 Performance QRCP Using Random Sampling. ArXiv e-prints.Google ScholarGoogle Scholar
  31. S. C. Eisenstat and I. C. F. Ipsen. 1995. Relative perturbation techniques for singular value problems. SIAM Journal on Numerical Analysis 32, 6, 1972--1988. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. A. George, K. Ikramov, and A. B. Kucherov. 2000. Some properties of symmetric quasi-definite matrices. SIAM Journal on Matrix Analysis and Applications 21, 4, 1318--1323. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. G. H. Golub and W. Kahan. 1965. Calculating the singular values and pseudo-inverse of a matrix. SIAM Journal on Numerical Analysis 2, 2, 205--224. Google ScholarGoogle ScholarCross RefCross Ref
  34. G. H. Golub and C. F. Van Loan. 1989. Matrix Computations (2nd ed.). Johns Hopkins University Press, Baltimore, MD.Google ScholarGoogle Scholar
  35. B. Großer and B. Lang. 2003. An O(n2) algorithm for the bidiagonal SVD. Linear Algebra and Its Applications 358, 13, 45--70. Google ScholarGoogle ScholarCross RefCross Ref
  36. N. J. Higham. 2000. QR factorization with complete pivoting and accurate computation of the SVD. Linear Algebra and Its Applications 309, 153--174. Google ScholarGoogle ScholarCross RefCross Ref
  37. Intel. 2015. Intel® Math Kernel Library 11.2 Update 3. Intel.Google ScholarGoogle Scholar
  38. W. Kahan. 2008. Why Can I Debug Some Numerical Programs That You Can’t? Retrieved June 6, 2017, from https://www.cs.berkeley.edu/∼wkahan/Stnfrd50.pdf.Google ScholarGoogle Scholar
  39. D. Knuth. 1977. The Correspondence Between Donald E. Knuth and Peter van Emde Boas on Priority Deques During the Spring of 1977. Retrieved June 6, 2017, from https://staff.fnwi.uva.nl/p.vanemdeboas/knuthnote.pdf.Google ScholarGoogle Scholar
  40. H. Ltaief, P. Luszczek, and J. Dongarra. 2013. High-performance bidiagonal reduction using tile algorithms on homogeneous multicore architectures. ACM Transactions on Mathematical Software 39, 3, 16:1--16:22.Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. M. J. D. Powell and J. K. Reid. 1969. On applying Householder transformations to linear least squares problems. In Information Processing 68: Proceedings of the International Federation of Information Processing Congress, Edinburgh, 1968. 122--126.Google ScholarGoogle Scholar
  42. R. Ralha. 2003. One-sided reduction to bidiagonal form. Linear Algebra and Its Applications 358, 13, 219--238. Google ScholarGoogle ScholarCross RefCross Ref
  43. G. W. Stewart. 1980. The efficient generation of random orthogonal matrices with an application to condition estimators. SIAM Journal of Numerical Analysis 17, 3, 403--409. Google ScholarGoogle ScholarCross RefCross Ref
  44. G. W. Stewart. 1995. QR Sometimes Beats Jacobi. Technical Report TR--3434. Department of Computer Science and Institute for Advanced Computer Studies, University of Maryland, College Park.Google ScholarGoogle Scholar
  45. G. W. Stewart. 1997a. A Gap-Revealing Matrix Decomposition. Technical Report TR--3771. Department of Computer Science and Institute for Advanced Computer Studies, University of Maryland, College Park.Google ScholarGoogle Scholar
  46. G. W. Stewart. 1997b. The QLP Approximation to the Singular Value Decomposition. Technical Report TR--97--75. Department of Computer Science and Institute for Advanced Computer Studies, University of Maryland, College Park.Google ScholarGoogle Scholar
  47. G. W. Stewart and J. Sun. 1990. Matrix Perturbation Theory. Academic Press, Boston, MA.Google ScholarGoogle Scholar
  48. A. Tomas, Z. Bai, and V. Hernandez. 2012. Parallelization of the QR decomposition with column pivoting using column cyclic distribution on multicore and GPU processors. In High Performance Computing for Computational Science—VECPAR 2012. Lecture Notes in Computer Science, Vol. 7851. Springer, 50--58. Google ScholarGoogle ScholarCross RefCross Ref
  49. A. van der Sluis 1969. Condition numbers and equilibration of matrices. Numerische Mathematik 14, 14--23. Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. K. Veselić. 1996. A note on the accuracy of symmetric eigenreduction algorithms. Electronic Transactions on Numerical Analysis 4, 37--45.Google ScholarGoogle Scholar
  51. K. Veselić and V. Hari. 1989. A note on a one-sided Jacobi algorithm. Numerische Mathematik 56, 627--633. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Algorithm 977: A QR--Preconditioned QR SVD Method for Computing the SVD with High Accuracy

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Mathematical Software
      ACM Transactions on Mathematical Software  Volume 44, Issue 1
      March 2018
      308 pages
      ISSN:0098-3500
      EISSN:1557-7295
      DOI:10.1145/3071076
      Issue’s Table of Contents

      Copyright © 2017 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 14 July 2017
      • Revised: 1 February 2017
      • Accepted: 1 February 2017
      • Received: 1 February 2016
      Published in toms Volume 44, Issue 1

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article
      • Research
      • Refereed

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader