skip to main content
10.1145/3067695.3067716acmconferencesArticle/Chapter ViewAbstractPublication PagesgeccoConference Proceedingsconference-collections
tutorial

Evolution of neural networks

Published: 15 July 2017 Publication History
First page of PDF

References

[1]
A. Agogino, K. Tumer, and R. Miikkulainen, Efficient credit assignment through evaluation function decomposition, in: Proceedings of the Genetic and Evolutionary Computation Conference (2005).
[2]
P. J. Angeline, G. M. Saunders, and J. B. Pollack, An evolutionary algorithm that constructs recurrent neural networks, IEEE Transactions on Neural Networks, 5:54--65 (1994).
[3]
E. Bahceci and R. Miikkulainen, Evolving strategies for social innovation games, in: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2015), Madrid, Spain (July 2015).
[4]
J. M. Baldwin, A new factor in evolution, The American Naturalist, 30:441--451, 536--553 (1896).
[5]
R. K. Belew, Evolution, learning and culture: Computational metaphors for adaptive algorithms, Complex Systems, 4:11--49 (1990).
[6]
B. D. Bryant and R. Miikkulainen, Acquiring visibly intelligent behavior with example-guided neuroevolution, in: Proceedings of the Twenty-Second National Conference on Artificial Intelligence, AAAI Press, Menlo Park, CA (2007).
[7]
D. J. Chalmers, The evolution of learning: An experiment in genetic connectionism, in: Touretzky et al.<sup>74</sup>, 81--90.
[8]
C.-C. Chen and R. Miikkulainen, Creating melodies with evolving recurrent neural networks, in: Proceedings of the INNS-IEEE International Joint Conference on Neural Networks, 2241--2246, IEEE, Piscataway, NJ (2001).
[9]
D. B. D'Ambrosio and K. O. Stanley, A novel generative encoding for exploiting neural network sensor and output geometry, in: Proceedings of the 9th Annual Conference on Genetic and Evolutionary Computation (GECCO '07), 974--981, ACM, New York, NY, USA (2007).
[10]
D. B. D'Ambrosio and K. O. Stanley, Generative encoding for multiagent learning, in: Proceedings of the Genetic and Evolutionary Computation Conference (2008).
[11]
N. S. Desai and R. Miikkulainen, Neuro-evolution and natural deduction, in: Proceedings of The First IEEE Symposium on Combinations of Evolutionary Computation and Neural Networks, 64--69, IEEE, Piscataway, NJ (2000).
[12]
G. Dubbin and K. O. Stanley, Learning to dance through interactive evolution, in: Proceedings of the Eighth European Event on Evolutionary and Biologically Inspired Music, Sound, Art and Design, Springer, Berlin (2010).
[13]
C. Fernando, D. Banarse, F. Besse, M. Jaderberg, D. Pfau, M. Reynolds, M. Lactot, and D. Wierstra, Convolution by evolution: Differentiable pattern producing networks, in: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2016), Denver, CO (2016).
[14]
C. Fernando, D. Banarse, C. Blundell, Y. Zwols, D. Hay, A. A. Rusu, A. Pritzel, and D. Wierstra, Pathnet: Evolution channels gradient descent in super neural networks, CoRR, abs/1701.08734 (2017).
[15]
D. Floreano, P. Dürr, and C. Mattiussi, Neuroevolution: From architectures to learning, Evolutionary Intelligence, 1:47--62 (2008).
[16]
D. Floreano and J. Urzelai, Evolutionary robots with on-line self-organization and behavioral fitness, Neural Networks, 13:431--4434 (2000).
[17]
B. Fullmer and R. Miikkulainen, Using marker-based genetic encoding of neural networks to evolve finite-state behaviour, in: Toward a Practice of Autonomous Systems: Proceedings of the First European Conference on Artificial Life, F. J. Varela and P. Bourgine, eds., 255--262, MIT Press, Cambridge, MA (1992).
[18]
J. J. Gauci and K. O. Stanley, A case study on the critical role of geometric regularity in machine learning, in: Proceedings of the Twenty-Third National Conference on Artificial Intelligence, AAAI Press, Menlo Park, CA (2008).
[19]
F. Gomez, Robust Non-Linear Control Through Neuroevolution, Ph.D. thesis, Department of Computer Sciences, The University of Texas at Austin (2003).
[20]
F. Gomez, D. Burger, and R. Miikkulainen, A neuroevolution method for dynamic resource allocation on a chip multiprocessor, in: Proceedings of the INNS-IEEE International Joint Conference on Neural Networks, 2355--2361, IEEE, Piscataway, NJ (2001).
[21]
F. Gomez and R. Miikkulainen, Incremental evolution of complex general behavior, Adaptive Behavior, 5:317--342 (1997).
[22]
F. Gomez, J. Schmidhuber, and R. Miikkulainen, Accelerated neural evolution through cooperatively coevolved synapses, Journal of Machine Learning Research, 9:937--965 (2008).
[23]
B. Greer, H. Hakonen, R. Lahdelma, and R. Miikkulainen, Numerical optimization with neuroevolution, in: Proceedings of the 2002 Congress on Evolutionary Computation, 361--401, IEEE, Piscataway, NJ (2002).
[24]
F. Gruau and D. Whitley, Adding learning to the cellular development of neural networks: Evolution and the Baldwin effect, Evolutionary Computation, 1:213--233 (1993).
[25]
G. E. Hinton and S. J. Nowlan, How learning can guide evolution, Complex Systems, 1:495--502 (1987).
[26]
H. Hoos, Programming by optimization, Communications of the ACM, 55:70--80 (2012).
[27]
A. K. Hoover, M. P. Rosario, and K. O. Stanley, Scaffolding for interactively evolving novel drum tracks for existing songs, in: Proceedings of the Sixth European Workshop on Evolutionary and Biologically Inspired Music, Sound, Art and Design, Springer, Berlin (2008).
[28]
C. Igel, Neuroevolution for reinforcement learning using evolution strategies, in: Proceedings of the 2003 Congress on Evolutionary Computation, R. Sarker, R. Reynolds, H. Abbass, K. C. Tan, B. McKay, D. Essam, and T. Gedeon, eds., 2588--2595, IEEE Press, Piscataway, NJ (2003).
[29]
A. Jain, A. Subramoney, and R. Miikkulainen, Task decomposition with neuroevolution in extended predator-prey domain, in: Proceedings of Thirteenth International Conference on the Synthesis and Simulation of Living Systems, East Lansing, MI, USA (2012).
[30]
R. Koppejan and S. Whiteson, Neuroevolutionary reinforcement learning for generalized control of simulated helicopters, Evolutionary Intelligence, 4:219--241 (2011).
[31]
J. Lehman and K. O. Stanley, Abandoning objectives: Evolution through the search for novelty alone, Evolutionary Computation, 19:189--223 (2010).
[32]
D. Lessin, D. Fussell, and R. Miikkulainen, Open-ended behavioral complexity for evolved virtual creatures, in: Proceedings of the Genetic and Evolutionary Computation Conference (2013).
[33]
D. Lessin, D. Fussell, and R. Miikkulainen, Trading control intelligence for physical intelligence: Muscle drives in evolved virtual creatures, in: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2014), Vancouver, BC, Canada (July 2014).
[34]
X. Li and R. Miikkulainen, Evolving adaptive poker players for effective opponent exploitation, in: AAAI-17 Workshop on Computer Poker and Imperfect Information Games, San Francisco, CA, USA (2017).
[35]
J. Z. Liang and R. Miikkulainen, Evolutionary bilevel optimization for complex control tasks, in: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2015), Madrid, Spain (July 2015).
[36]
Y. Liu, X. Yao, and T. Higuchi, Evolutionary ensembles with negative correlation learning, IEEE Transactions on Evolutionary Computation, 4:380--387 (2000).
[37]
A. Lockett and R. Miikkulainen, Neuroannealing: Martingale-driven learning for neural network, in: Proceedings of the Genetic and Evolutionary Computation Conference (2013).
[38]
I. Loshchilov and F. Hutter, CMA-ES for hyperparameter optimization of deep neural networks, CoRR, abs/1604.07269 (2016).
[39]
J. R. McDonnell and D. Waagen, Evolving recurrent perceptrons for time-series modeling, IEEE Transactions on Evolutionary Computation, 5:24--38 (1994).
[40]
P. McQuesten, Cultural Enhancement of Neuroevolution, Ph.D. thesis, Department of Computer Sciences, The University of Texas at Austin, Austin, TX (2002). Technical Report AI-02-295.
[41]
E. Meyerson, J. Lehman, and R. Miikkulainen, Learning behavior characterizations for novelty search, in: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2016), Denver, CO (2016).
[42]
E. Meyerson and R. Miikkulainen, Discovering evolutionary stepping stones through behavior domination, in: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2017), Berlin, Germany (2017).
[43]
E. Mjolsness, D. H. Sharp, and B. K. Alpert, Scaling, machine learning, and genetic neural nets, Advances in Applied Mathematics, 10:137--163 (1989).
[44]
D. J. Montana and L. Davis, Training feedforward neural networks using genetic algorithms, in: Proceedings of the 11th International Joint Conference on Artificial Intelligence, 762--767, San Francisco: Morgan Kaufmann (1989).
[45]
D. E. Moriarty and R. Miikkulainen, Forming neural networks through efficient and adaptive co-evolution, Evolutionary Computation, 5:373--399 (1997).
[46]
D. E. Moriarty and R. Miikkulainen, Hierarchical evolution of neural networks, in: Proceedings of the 1998 IEEE Conference on Evolutionary Computation (ICEC'98), 428--433, IEEE, Piscataway, NJ (1998).
[47]
G. Morse and K. O. Stanley, Simple evolutionary optimization can rival stochastic gradient descent in neural networks, in: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2016), Denver, CO (2016).
[48]
S. Nolfi, J. L. Elman, and D. Parisi, Learning and evolution in neural networks, Adaptive Behavior, 2:5--28 (1994).
[49]
S. Nolfi and D. Parisi, Good teaching inputs do not correspond to desired responses in ecological neural networks, Neural Processing Letters, 1(2):1--4 (1994).
[50]
D. Pardoe, M. Ryoo, and R. Miikkulainen, Evolving neural network ensembles for control problems, in: Proceedings of the Genetic and Evolutionary Computation Conference (2005).
[51]
M. A. Potter and K. A. D. Jong, Cooperative coevolution: An architecture for evolving coadapted subcomponents, Evolutionary Computation, 8:1--29 (2000).
[52]
A. Rawal and R. Miikkulainen, Evolving deep lstm-based memory networks using an information maximization objective, in: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2016), Denver, CO (2016).
[53]
E. Real, S. Moore, A. Selle, S. Saxena, Y. L. Suematsu, Q. Le, and A. Kurakin, Large-scale evolution of image classifiers, CoRR, abs/1703.01041 (2017).
[54]
J. Reisinger and R. Miikkulainen, Acquiring evolvability through adaptive representations, in: Proceeedings of the Genetic and Evolutionary Computation Conference, 1045--1052 (2007).
[55]
J. Reisinger, K. O. Stanley, and R. Miikkulainen, Evolving reusable neural modules, in: Proceedings of the Genetic and Evolutionary Computation Conference (2004).
[56]
T. P. Runarsson and M. T. Jonsson, Evolution and design of distributed learning rules, in: Proceedings of The First IEEE Symposium on Combinations of Evolutionary Computation and Neural Networks, 59--63, IEEE, Piscataway, NJ (2000).
[57]
T. Salimans, J. Ho, X. Chen, and I. Sutskever, Evolution strategies as a scalable alternative to reinforcement learning, CoRR, abs/1703.03864 (2017).
[58]
J. D. Schaffer, D. Whitley, and L. J. Eshelman, Combinations of genetic algorithms and neural networks: A survey of the state of the art, in: Proceedings of the International Workshop on Combinations of Genetic Algorithms and Neural Networks, D. Whitley and J. Schaffer, eds., 1--37, IEEE Computer Society Press, Los Alamitos, CA (1992).
[59]
J. Schmidhuber, Deep learning in neural networks: An overview, Neural Networks, 61:85--117 (2015).
[60]
J. Schrum, I. Karpov, and R. Miikkulainen, Humanlike combat behavior via multiobjective neuroevolution, in: Believable Bots, P. Hingston, ed., Springer, New York (2012).
[61]
J. Schrum and R. Miikkulainen, Evolving agent behavior in multiobjective domains using fitness-based shaping, in: Proceedings of the Genetic and Evolutionary Computation Conference (2010).
[62]
J. Secretan, N. Beato, D. B. D'Ambrosio, A. Rodriguez, A. Campbell, J. T. Folsom-Kovarik, and K. O. Stanley, Picbreeder: A case study in collaborative evolutionary exploration of design space, Evolutionary Computation, 19:345--371 (2011).
[63]
J. Secretan, N. Beato, D. B. D'Ambrosio, A. Rodriguez, A. Campbell, and K. O. Stanley, Picbreeder: Evolving pictures collaboratively online, in: Proceedings of Computer Human Interaction Conference, ACM, New York (2008).
[64]
A. A. Siddiqi and S. M. Lucas, A comparison of matrix rewriting versus direct encoding for evolving neural networks, in: Proceedings of IEEE International Conference on Evolutionary Computation, 392--397, IEEE, Piscataway, NJ (1998).
[65]
K. Sims, Evolving 3D morphology and behavior by competition, in: Proceedings of the Fourth International Workshop on the Synthesis and Simulation of Living Systems (Artificial Life IV), R. A. Brooks and P. Maes, eds., 28--39, MIT Press, Cambridge, MA (1994).
[66]
K. O. Stanley, Efficient Evolution of Neural Networks Through Complexification, Ph.D. thesis, Department of Computer Sciences, The University of Texas at Austin, Austin, TX (2003).
[67]
K. O. Stanley, B. D. Bryant, and R. Miikkulainen, Evolving adaptive neural networks with and without adaptive synapses, in: Proceedings of the 2003 Congress on Evolutionary Computation, IEEE, Piscataway, NJ (2003).
[68]
K. O. Stanley and J. Lehman, Why Greatness Cannot Be Planned: The Myth of the Objective, Springer, Berlin (2015).
[69]
K. O. Stanley and R. Miikkulainen, Evolving Neural Networks Through Augmenting Topologies, Evolutionary Computation, 10:99--127 (2002).
[70]
K. O. Stanley and R. Miikkulainen, A taxonomy for artificial embryogeny, Artificial Life, 9(2):93--130 (2003).
[71]
D. G. Stork, S. Walker, M. Burns, and B. Jackson, Preadaptation in neural circuits, in: International Joint Conference on Neural Networks (Washington, DC), 202--205, IEEE, Piscataway, NJ (1990).
[72]
W. Tansey, E. Feasley, and R. Miikkulainen, Accelerating evolution via egalitarian social learning, in: Proceedings of the 14th Annual Genetic and Evolutionary Computation Conference (GECCO 2012), Philadelphia, Pennsylvania, USA (July 2012).
[73]
M. Taylor, S. Whiteson, and P. Stone, Comparing evolutionary and temporal difference methods in a reinforcement learning domain, in: Proceedings of the Genetic and Evolutionary Computation Conference (2006).
[74]
D. S. Touretzky, J. L. Elman, T. J. Sejnowski, and G. E. Hinton, eds., Proceedings of the 1990 Connectionist Models Summer School, San Francisco: Morgan Kaufmann (1990).
[75]
J. Urzelai, D. Floreano, M. Dorigo, and M. Colombetti, Incremental robot shaping, Connection Science, 10:341--360 (1998).
[76]
V. Valsalam, J. Hiller, R. MacCurdy, H. Lipson, and R. Miikkulainen, Constructing controllers for physical multilegged robots using the enso neuroevolution approach, Evolutionary Intelligence, 14:303--331 (2013).
[77]
V. Valsalam and R. Miikkulainen, Evolving symmetry for modular system design, IEEE Transactions on Evolutionary Computation, 15:368--386 (2011).
[78]
V. K. Valsalam, J. A. Bednar, and R. Miikkulainen, Constructing good learners using evolved pattern generators, in: Proceedings of the Genetic and Evolutionary Computation Conference, GECCO-2005, H.-G. Beyer et al., eds., 11--18, New York: ACM (2005).
[79]
V. K. Valsalam and R. Miikkulainen, Modular neuroevolution for multilegged locomotion, in: Proceedings of the Genetic and Evolutionary Computation Conference GECCO 2008, 265--272, ACM, New York, NY, USA (2008).
[80]
V. K. Valsalam and R. Miikkulainen, Evolving symmetric and modular neural networks for distributed control, in: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO) 2009, 731--738, ACM, New York, NY, USA (2009).
[81]
A. van Eck Conradie, R. Miikkulainen, and C. Aldrich, Adaptive control utilising neural swarming, in: Proceedings of the Genetic and Evolutionary Computation Conference, W. B. Langdon, E. Cantú-Paz, K. E. Mathias, R. Roy, D. Davis, R. Poli, K. Balakrishnan, V. Honavar, G. Rudolph, J. Wegener, L. Bull, M. A. Potter, A. C. Schultz, J. F. Miller, E. K. Burke, and N. Jonoska, eds., San Francisco: Morgan Kaufmann (2002).
[82]
A. van Eck Conradie, R. Miikkulainen, and C. Aldrich, Intelligent process control utilizing symbiotic memetic neuro-evolution, in: Proceedings of the 2002 Congress on Evolutionary Computation (2002).
[83]
O. Vinyals, A. Toshev, S. Bengio, and D. Erhan, Show and tell: A neural image caption generator, in: Proc. of CVPR, 3156--3164 (2015).
[84]
S. Whiteson, N. Kohl, R. Miikkulainen, and P. Stone, Evolving keepaway soccer players through task decomposition, Machine Learning, 59:5--30 (2005).
[85]
S. Whiteson and P. Stone, Evolutionary function approximation for reinforcement learning, Journal of Machine Learning Research, 7:877--917 (2006).
[86]
S. Whiteson and D. Whiteson, Stochastic optimization for collision selection in high energy physics, in: Proceedings of the Nineteenth Annual Innovative Applications of Artificial Intelligence Conference (2007).
[87]
D. Whitley, S. Dominic, R. Das, and C. W. Anderson, Genetic reinforcement learning for neurocontrol problems, Machine Learning, 13:259--284 (1993).
[88]
A. P. Wieland, Evolving controls for unstable systems, in: Touretzky et al.<sup>74</sup>, 91--102.
[89]
X. Yao, Evolving artificial neural networks, Proceedings of the IEEE, 87(9):1423--1447 (1999).

Cited By

View all
  • (2024)Which classifiers are connected to others? An optimal connection framework for multi-layer ensemble systemsKnowledge-Based Systems10.1016/j.knosys.2024.112522304(112522)Online publication date: Nov-2024
  • (2023)Study and Innovative Approach of Deep Learning Algorithms and ArchitectureExploring Future Opportunities of Brain-Inspired Artificial Intelligence10.4018/978-1-6684-6980-4.ch003(28-45)Online publication date: 10-Mar-2023
  • (2023)Designing Deep Learning Architectures with Neuroevolution. Study Case: Fetal Morphology ScanInnovation in Medicine and Healthcare10.1007/978-981-99-3311-2_23(263-272)Online publication date: 31-May-2023
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
GECCO '17: Proceedings of the Genetic and Evolutionary Computation Conference Companion
July 2017
1934 pages
ISBN:9781450349390
DOI:10.1145/3067695
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the Owner/Author.

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 15 July 2017

Check for updates

Qualifiers

  • Tutorial

Conference

GECCO '17
Sponsor:

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 18 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2024)Which classifiers are connected to others? An optimal connection framework for multi-layer ensemble systemsKnowledge-Based Systems10.1016/j.knosys.2024.112522304(112522)Online publication date: Nov-2024
  • (2023)Study and Innovative Approach of Deep Learning Algorithms and ArchitectureExploring Future Opportunities of Brain-Inspired Artificial Intelligence10.4018/978-1-6684-6980-4.ch003(28-45)Online publication date: 10-Mar-2023
  • (2023)Designing Deep Learning Architectures with Neuroevolution. Study Case: Fetal Morphology ScanInnovation in Medicine and Healthcare10.1007/978-981-99-3311-2_23(263-272)Online publication date: 31-May-2023
  • (2023)Neural Architecture Search: Practical Key ConsiderationsDistributed Computing and Artificial Intelligence, 20th International Conference10.1007/978-3-031-38333-5_17(165-174)Online publication date: 21-Jul-2023
  • (2021)Evolving Character-Level DenseNet Architectures Using Genetic ProgrammingApplications of Evolutionary Computation10.1007/978-3-030-72699-7_42(665-680)Online publication date: 1-Apr-2021
  • (2020)PBIL for Optimizing Hyperparameters of Convolutional Neural Networks and STL DecompositionHybrid Artificial Intelligent Systems10.1007/978-3-030-61705-9_13(147-159)Online publication date: 11-Nov-2020
  • (2020)Incremental Evolution and Development of Deep Artificial Neural NetworksGenetic Programming10.1007/978-3-030-44094-7_3(35-51)Online publication date: 15-Apr-2020
  • (2019)Demystifying Parallel and Distributed Deep LearningACM Computing Surveys10.1145/332006052:4(1-43)Online publication date: 30-Aug-2019
  • (2019)Probabilistic Policy Reuse for Safe Reinforcement LearningACM Transactions on Autonomous and Adaptive Systems10.1145/331009013:3(1-24)Online publication date: 15-Mar-2019
  • (2019)Improving Data-Analytics Performance Via Autonomic Control of Concurrency and Resource UnitsACM Transactions on Autonomous and Adaptive Systems10.1145/330953913:3(1-25)Online publication date: 15-Mar-2019
  • Show More Cited By

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media