skip to main content
10.1145/3071178.3071238acmconferencesArticle/Chapter ViewAbstractPublication PagesgeccoConference Proceedingsconference-collections
research-article

Configuring irace using surrogate configuration benchmarks

Published: 01 July 2017 Publication History

Abstract

Over the recent years, several tools for the automated configuration of parameterized algorithms have been developed. These tools, also called configurators, have themselves parameters that influence their search behavior and make them malleable to different kinds of configuration tasks. The default values of these parameters are set manually based on the experience of the configurator's developers. Studying the impact of these parameters or configuring them is very expensive as it would require many executions of these tools on configuration tasks, each taking often many hours or days of computation. In this work, we tackle this problem using a meta-tuning process, based on the use of surrogate benchmarks that are much faster to evaluate. This paper studies the feasibility of this process using the popular irace configurator as the method to be meta-configured. We first study the consistency between the real and surrogate benchmarks using three measures: the prediction accuracy of the surrogate models, the homogeneity of the benchmarks and the list of important algorithm parameters. Afterwards, we use irace to configure irace on those surrogates. Experimental results indicate the feasibility of this process and a clear potential improvement of irace over its default configuration.

References

[1]
C. Ansótegui, Y. Malitsky, H. Samulowitz, M. Sellmann, and K. Tierney. Model-based genetic algorithms for algorithm configuration. IJCAI-15, pp. 733--739. IJCAI/AAAI Press, Menlo Park, CA (2015).
[2]
C. Ansótegui, M. Sellmann, and K. Tierney. A gender-based genetic algorithm for the automatic configuration of algorithms. In: CP 2009, LNCS, vol. 5732, pp. 142--157. Springer (2009).
[3]
D. Babić and F. Hutter. Spear theorem prover. In SAT'08 (2008).
[4]
T. Bartz-Beielstein, C. Lasarczyk, and M. Preuss. The sequential parameter optimization toolbox. In: Experimental Methods for the Analysis of Optimization Algorithms, pp. 337--360. Springer (2010).
[5]
A. Biedenkapp, M. Lindauer, K. Eggensperger, F. Hutter, C. Fawcett, and H. H. Hoos. Efficient parameter importance analysis via ablation with surrogates. In Proceedings of the AAAI conference, to appear. (2017)
[6]
K. Eggensperger, F. Hutter, H. H. Hoos, and K. Leyton-Brown. Efficient bench-marking of hyperparameter optimizers via surrogates. In: AAAI, pp. 1114--1120. AAAI Press (2015).
[7]
C. Fawcett and H. H. Hoos. Analysing differences between algorithm configurations through ablation. Journal of Heuristics, 22(4):431--458 (2016).
[8]
H. H. Hoos. Automated algorithm configuration and parameter tuning. In: Autonomous Search, pp. 37--71. Springer (2012).
[9]
F. Hutter, H. H. Hoos, and K. Leyton-Brown. Sequential model-based optimization for general algorithm configuration. In: LION 5, LNCS, vol. 6683, pp. 507--523. Springer (2011).
[10]
F. Hutter, H. H. Hoos, and K. Leyton-Brown. An efficient approach for assessing hyperparameter importance. In Proc. of the 31th Int. Conf. on Machine Learning, vol. 32, pp. 754--762 (2014).
[11]
F. Hutter, H. H. Hoos, K. Leyton-Brown, and T. Stützle. ParamILS: an automatic algorithm configuration framework. JAIR, 36:267--306 (2009).
[12]
F. Hutter, M. López-Ibáñez, C. Fawcett, M. T. Lindauer, H. H. Hoos, K. Leyton-Brown, and T. Stützle. AClib: a benchmark library for algorithm configuration. In:LION 8, LNCS, vol. 8426, pp. 36--40. Springer (2014).
[13]
F. Hutter, L. Xu, H. H. Hoos, and K. Leyton-Brown. Algorithm runtime prediction: Methods & evaluation. Artificial Intelligence, 206:79--111 (2014).
[14]
D. R. Jones, M. Schonlau, and W. J. Welch. Efficient global optimization of expensive black-box functions. Journal of Global Optimization, 13(4):455--492 (1998).
[15]
S. Koziel, D. E. Ciaurri, and L. Leifsson. Surrogate-based methods. Computational Optimization, Methods and Algorithms, Studies in Computational Intelligence, vol. 356, pp. 33--59. Springer (2011).
[16]
M. López-Ibáñez, J. Dubois-Lacoste, L. Pérez Cáceres, T. Stützle, and M. Birattari. The irace package: Iterated racing for automatic algorithm configuration. Operations Research Perspectives, pp. 43--58 (2016).
[17]
M. López-Ibáñez, L. Pérez Cáceres, J. Dubois-Lacoste, T. Stützle, and M. Birattari. The irace package: User guide. Tech. Rep., IRIDIA, ULB, Belgium (2016).
[18]
L. Pérez Cáceres, M. López-Ibáñez, and T. Stützle. An analysis of parameters of irace. In: EvoCOP 2014, LNCS, vol. 8600, pp. 37--48. Springer (2014).
[19]
T. Stützle. ACOTSP: A software package of various ant colony optimization algorithms applied to the symmetric traveling salesman problem, 2002.
[20]
L. Xu, F. Hutter, H. H. Hoos, and K. Leyton-Brown. SATzilla: portfolio-based algorithm selection for SAT. JAIR, 32:565--606 (2008)
[21]
E. Zarpas. Benchmarking SAT solvers for bounded model checking. In:Int. Conf. on Theory and Applications of Satisfiability Testing, vol. 3569, pp. 340--354 (2005).

Cited By

View all
  • (2023)Methods/ContributionsEnhancing Surrogate-Based Optimization Through Parallelization10.1007/978-3-031-30609-9_3(29-94)Online publication date: 30-May-2023
  • (2022)A Literature Survey on Offline Automatic Algorithm ConfigurationApplied Sciences10.3390/app1213631612:13(6316)Online publication date: 21-Jun-2022
  • (2022)Automated Benchmark-Driven Design and Explanation of Hyperparameter OptimizersIEEE Transactions on Evolutionary Computation10.1109/TEVC.2022.321133626:6(1336-1350)Online publication date: Dec-2022
  • Show More Cited By

Index Terms

  1. Configuring irace using surrogate configuration benchmarks

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    GECCO '17: Proceedings of the Genetic and Evolutionary Computation Conference
    July 2017
    1427 pages
    ISBN:9781450349208
    DOI:10.1145/3071178
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Sponsors

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 01 July 2017

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. automated parameter configuration
    2. surrogate benchmarks

    Qualifiers

    • Research-article

    Funding Sources

    • COMEX
    • Flemish Government
    • Research Foundation - Flanders (FWO)

    Conference

    GECCO '17
    Sponsor:

    Acceptance Rates

    GECCO '17 Paper Acceptance Rate 178 of 462 submissions, 39%;
    Overall Acceptance Rate 1,669 of 4,410 submissions, 38%

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)5
    • Downloads (Last 6 weeks)1
    Reflects downloads up to 05 Mar 2025

    Other Metrics

    Citations

    Cited By

    View all
    • (2023)Methods/ContributionsEnhancing Surrogate-Based Optimization Through Parallelization10.1007/978-3-031-30609-9_3(29-94)Online publication date: 30-May-2023
    • (2022)A Literature Survey on Offline Automatic Algorithm ConfigurationApplied Sciences10.3390/app1213631612:13(6316)Online publication date: 21-Jun-2022
    • (2022)Automated Benchmark-Driven Design and Explanation of Hyperparameter OptimizersIEEE Transactions on Evolutionary Computation10.1109/TEVC.2022.321133626:6(1336-1350)Online publication date: Dec-2022
    • (2021)AutoCCAGProceedings of the 43rd International Conference on Software Engineering10.1109/ICSE43902.2021.00030(201-212)Online publication date: 22-May-2021
    • (2020)Synthetic Benchmarks for Genetic ImprovementProceedings of the IEEE/ACM 42nd International Conference on Software Engineering Workshops10.1145/3387940.3392175(287-288)Online publication date: 27-Jun-2020
    • (2020)Continuous Optimization Benchmarks by SimulationParallel Problem Solving from Nature – PPSN XVI10.1007/978-3-030-58112-1_19(273-286)Online publication date: 31-Aug-2020
    • (2018)Data-driven search-based software engineeringProceedings of the 15th International Conference on Mining Software Repositories10.1145/3196398.3196442(341-352)Online publication date: 28-May-2018
    • (2018)Automated Design of Metaheuristic AlgorithmsHandbook of Metaheuristics10.1007/978-3-319-91086-4_17(541-579)Online publication date: 21-Sep-2018
    • (2018)Analysis of Algorithm Components and Parameters: Some Case StudiesLearning and Intelligent Optimization10.1007/978-3-030-05348-2_25(288-303)Online publication date: 31-Dec-2018
    • (2018)Adaptive Multi-objective Local Search Algorithms for the Permutation Flowshop Scheduling ProblemLearning and Intelligent Optimization10.1007/978-3-030-05348-2_22(241-256)Online publication date: 31-Dec-2018

    View Options

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Figures

    Tables

    Media

    Share

    Share

    Share this Publication link

    Share on social media