skip to main content
research-article

Computational design and automated fabrication of kirchhoff-plateau surfaces

Published:20 July 2017Publication History
Skip Abstract Section

Abstract

We propose a computational tool for designing Kirchhoff-Plateau Surfaces---planar rod networks embedded in pre-stretched fabric that deploy into complex, three-dimensional shapes. While Kirchhoff-Plateau Surfaces offer an intriguing and expressive design space, navigating this space is made difficult by the highly nonlinear nature of the underlying mechanical problem. In order to tackle this challenge, we propose a user-guided but computer-assisted approach that combines an efficient forward simulation model with a dedicated optimization algorithm in order to implement a powerful set of design tools. We demonstrate our method by designing a diverse set of complex-shaped Kirchhoff-Plateau Surfaces, each validated through physically-fabricated prototypes.

Skip Supplemental Material Section

Supplemental Material

References

  1. Aric Bartle, Alla Sheffer, Vladimir G. Kim, Danny M. Kaufman, Nicholas Vining, and Floraine Berthouzoz. 2016. Physics-driven Pattern Adjustment for Direct 3D Garment Editing. ACM Trans. Graph. 35, 4, Article 50 (July 2016), 11 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Miklós Bergou, Basile Audoly, Etienne Vouga, Max Wardetzky, and Eitan Grinspun. 2010. Discrete Viscous Threads. ACM Trans. Graph. (Proc. SIGGRAPH) 29, 4, Article 116 (2010).Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Miklós Bergou, Max Wardetzky, Stephen Robinson, Basile Audoly, and Eitan Grinspun. 2008. Discrete Elastic Rods. ACM Trans. Graph. (Proc. SIGGRAPH) 27, 3, Article 63 (2008).Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Florence Bertails, Basile Audoly, Marie-Paule Cani, Bernard Querleux, Frédéric Leroy, and Jean-Luc Lévêque. 2006. Super-helices for Predicting the Dynamics of Natural Hair. In Proc. of ACM SIGGRAPH '06. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Philippe Block and John Ochsendorf. 2007. Thrust Network Analysis: A New Methodology for Three-Dimensional Equilibrium. Journal of the International Association for Shell and Spatial Structures 48, 3, Article 155 (2007).Google ScholarGoogle Scholar
  6. Xiang Chen, Changxi Zheng, Weiwei Xu, and Kun Zhou. 2014. An Asymptotic Numerical Method for Inverse Elastic Shape Design. ACM Trans. Graph. 33, 4, Article 95 (July 2014), 11 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Xiang 'Anthony' Chen, Stelian Coros, Jennifer Mankoff, and Scott E. Hudson. 2015. Encore: 3D Printed Augmentation of Everyday Objects with Printed-over, Affixed and Interlocked Attachments. In ACM SIGGRAPH 2015 Posters (SIGGRAPH '15). ACM, New York, NY, USA, Article 3, 1 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Keenan Crane, Ulrich Pinkall, and Peter Schröder. 2011. Spin Transformations of Discrete Surfaces. ACM Trans. Graph. 30, 4, Article 104 (July 2011), 10 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Fernando de Goes, Pierre Alliez, Houman Owhadi, and Mathieu Desbrun. 2013. On the Equilibrium of Simplicial Masonry Structures. ACM Trans. Graph. 32, 4 (2013). Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Philippe Decaudin, Dan Julius, Jamie Wither, Laurence Boissieux, Alla Sheffer, and Marie-Paule Cani. 2006. Virtual Garments: A Fully Geometric Approach for Clothing Design. Computer Graphics Forum (2006). Google ScholarGoogle ScholarCross RefCross Ref
  11. Bailin Deng, Sofien Bouaziz, Mario Deuss, Alexandre Kaspar, Yuliy Schwartzburg, and Mark Pauly. 2015. Interactive Design Exploration for Constrained Meshes. Computer-Aided Design 61 (2015), 13 -- 23. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Alexandre Derouet-Jourdan, Florence Bertails-Descoubes, and Joëlle Thollot. 2010. Stable Inverse Dynamic Curves. ACM Trans. Graph. 29, 6, Article 137 (Dec. 2010), 10 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Gerhard Dziuk and John E. Hutchinson. 1999. The Discrete Plateau Problem: Algorithm and Numerics. Math. Comput. 68, 225 (Jan. 1999), 1--23. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Akash Garg, Andrew O. Sageman-Furnas, Bailin Deng, Yonghao Yue, Eitan Grinspun, Mark Pauly, and Max Wardetzky. 2014. Wire Mesh Design. ACM Trans. Graph. (Proc. SIGGRAPH) 33, 4 (2014).Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. L. Giomi and L. Mahadevan. 2012. Minimal surfaces bounded by elastic lines. Proceedings: Mathematical, Physical and Engineering Sciences 468, 2143 (2012), 1851--1864. Google ScholarGoogle ScholarCross RefCross Ref
  16. Giulio G. Giusteri, Paolo Franceschini, and Eliot Fried. 2016. Instability Paths in the Kirchhoff-Plateau Problem. Journal of Nonlinear Science 26, 4 (2016), 1097--1132. Google ScholarGoogle ScholarCross RefCross Ref
  17. Giulio G. Giusteri, Luca Lussardi, and Eliot Fried. 2017. Solution of the Kirchhoff-Plateau Problem. Journal of Nonlinear Science (2017), 1--21. Google ScholarGoogle ScholarCross RefCross Ref
  18. Eitan Grinspun, Anil N. Hirani, Mathieu Desbrun, and Peter Schröder. 2003. Discrete Shells. In Proceedings of the 2003 ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA '03). 62--67.Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Christophe Guberan and Carlo Clopath. 2016. Active Shoes. http://www.selfassemblylab.net/ActiveShoes.php. (2016). MIT Self Assembly Lab.Google ScholarGoogle Scholar
  20. Jean Hergel and Sylvain Lefebvre. 2014. Clean Color: Improving Multi-filament 3D Prints. Computer Graphics Forum (2014). Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Martin Kilian, Simon Flöry, Zhonggui Chen, Niloy J. Mitra, Alla Sheffer, and Helmut Pottmann. 2008. Curved Folding. ACM Trans. Graph. 27, 3, Article 75 (Aug. 2008), 9 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Mina Konaković, Keenan Crane, Bailin Deng, Sofien Bouaziz, Daniel Piker, and Mark Pauly. 2016. Beyond Developable: Computational Design and Fabrication with Auxetic Materials. ACM Trans. Graph. 35, 4, Article 89 (July 2016), 11 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. K. Koohestani. 2014. Nonlinear force density method for the form-finding of minimal surface membrane structures. Communications in Nonlinear Science and Numerical Simulation 19, 6 (2014), 2071 -- 2087. Google ScholarGoogle ScholarCross RefCross Ref
  24. Yijing Li and Jernej Barbič. 2014. Stable Orthotropic Materials. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA '14). 41--46.Google ScholarGoogle Scholar
  25. Julian Lienhard, Holger Alpermann, Christoph Gengnagel, and Jan Knippers. 2013. Active Bending: a Review on Structures where Bending is Used as a Self-Formation Process. International Journal of Space Structures 28, 3--4 (2013), 187--196.Google ScholarGoogle ScholarCross RefCross Ref
  26. Yang Liu, Hao Pan, John Snyder, Wenping Wang, and Baining Guo. 2013. Computing Self-supporting Surfaces by Regular Triangulation. ACM Trans. Graph. 32, 4, Article 92 (July 2013), 10 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Yang Liu, Helmut Pottmann, Johannes Wallner, Yong-Liang Yang, and Wenping Wang. 2006. Geometric Modeling with Conical Meshes and Developable Surfaces. ACM Trans. Graph. 25, 3 (July 2006), 681--689. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. William H. III Meeks and Joaquín Pérez. 2011. The classical theory of minimal surfaces. Bull. Amer. Math. Soc. 48 (2011), 325--407.Google ScholarGoogle ScholarCross RefCross Ref
  29. Eder Miguel, Derek Bradley, Bernhard Thomaszewski, Bernd Bickel, Wojciech Matusik, Miguel A. Otaduy, and Steve Marschner. 2012. Data-Driven Estimation of Cloth Simulation Models. Comput. Graph. Forum 31, 2 (2012), 519--528. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Eder Miguel, Mathias Lepoutre, and Bernd Bickel. 2016. Computational Design of Stable Planar-rod Structures. ACM Trans. Graph. 35, 4, Article 86 (July 2016), 11 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Yuki Mori and Takeo Igarashi. 2007. Plushie: An Interactive Design System for Plush Toys. ACM Trans. Graph. (Proc. SIGGRAPH) (2007).Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Stefanie Mueller, Tobias Mohr, Kerstin Guenther, Johannes Frohnhofen, and Patrick Baudisch. 2014. faBrickation: Fast 3D Printing of Functional Objects by Integrating Construction Kit Building Blocks. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI '14). ACM, New York, NY, USA, 3827--3834. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Przemyslaw Musialski, Christian Hafner, Florian Rist, Michael Birsak, Michael Wimmer, and Leif Kobbelt. 2016. Non-linear Shape Optimization Using Local Subspace Projections. ACM Trans. Graph. 35, 4, Article 87 (July 2016), 13 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. J. Nocedal and S. J. Wright. 2006. Numerical Optimization (2nd ed.). Springer, New York.Google ScholarGoogle Scholar
  35. Hao Pan, Yi-King Choi, Yang Liu, Wenchao Hu, Qiang Du, Konrad Polthier, Caiming Zhang, and Wenping Wang. 2012. Robust Modeling of Constant Mean Curvature Surfaces. ACM Trans. Graph. 31, 4, Article 85 (July 2012), 11 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Daniele Panozzo, Philippe Block, and Olga Sorkine-Hornung. 2013. Designing Unreinforced Masonry Models. ACM Trans. Graph. 32, 4, Article 91 (July 2013), 12 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Jesús Pérez, Bernhard Thomaszewski, Stelian Coros, Bernd Bickel, José A. Canabal, Robert Sumner, and Miguel A. Otaduy. 2015. Design and Fabrication of Flexible Rod Meshes. ACM Trans. Graph. (Proc. SIGGRAPH) 34, 4, Article 138 (2015).Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Helmut Pottmann, Michael Eigensatz, Amir Vaxman, and Johannes Wallner. 2015. Architectural Geometry. Comput. Graph. 47, C (April 2015), 145--164. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Christian Schüller, Daniele Panozzo, Anselm Grundhöfer, Henning Zimmer, Evgeni Sorkine, and Olga Sorkine-Hornung. 2016. Computational Thermoforming. ACM Trans. Graph. 35, 4, Article 43 (July 2016), 9 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Mélina Skouras, Stelian Coros, Eitan Grinspun, and Bernhard Thomaszewski. 2015. Interactive Surface Design with Interlocking Elements. ACM Trans. Graph. 34, 6, Article 224 (Oct. 2015), 7 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Mélina Skouras, Bernhard Thomaszewski, Peter Kaufmann, Akash Garg, Bernd Bickel, Eitan Grinspun, and Markus Gross. 2014. Designing Inflatable Structures. ACM Trans. Graph. (Proc. SIGGRAPH) 33, 4 (2014).Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Justin Solomon, Etienne Vouga, Max Wardetzky, and Eitan Grinspun. 2012. Flexible Developable Surfaces. Comput. Graphics Forum 31, 5 (2012).Google ScholarGoogle Scholar
  43. Olga Sorkine. 2005. Laplacian Mesh Processing. In Eurographics 2005 - State of the Art Reports, Yiorgos Chrysanthou and Marcus Magnor (Eds.). The Eurographics Association.Google ScholarGoogle Scholar
  44. J. Spillmann and M. Teschner. 2007. CoRdE: Cosserat Rod Elements for the Dynamic Simulation of One-dimensional Elastic Objects. In Proceedings of the 2007 ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA '07). Eurographics Association, Aire-la-Ville, Switzerland, Switzerland, 63--72. http://dl.acm.org/citation.cfm?id=1272690.1272700Google ScholarGoogle Scholar
  45. Chengcheng Tang, Pengbo Bo, Johannes Wallner, and Helmut Pottmann. 2016. Interactive Design of Developable Surfaces. ACM Trans. Graph. 35, 2, Article 12 (Jan. 2016), 12 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Chengcheng Tang, Xiang Sun, Alexandra Gomes, Johannes Wallner, and Helmut Pottmann. 2014. Form-finding with Polyhedral Meshes Made Simple. ACM Trans. Graph. 33, 4, Article 70 (July 2014), 9 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Christopher D. Twigg and Zoran Kačić-Alesić. 2011. Optimization for Sag-free Simulations. In Proceedings of the 2011 ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA '11). ACM, New York, NY, USA, 225--236. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Nobuyuki Umetani, Danny M. Kaufman, Takeo Igarashi, and Eitan Grinspun. 2011. Sensitive Couture for Interactive Garment Modeling and Editing. ACM Trans. Graph. 30, 4, Article 90 (July 2011), 12 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. T. Van Mele, L. De Laet, D. Veenendaal, M. Mollaert, and P. Block. 2013. Shaping tension structures by actively bent linear elements. International Journal of Space Structures 28, 3 (2013), 127--135. Google ScholarGoogle ScholarCross RefCross Ref
  50. Amir Vaxman. 2014. A Projective Framework for Polyhedral Mesh Modelling. Comput. Graph. Forum 33, 8 (Dec. 2014), 121--131. Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. Etienne Vouga, Mathias Höbinger, Johannes Wallner, and Helmut Pottmann. 2012. Design of Self-supporting Surfaces. ACM Trans. Graph. 31, 4, Article 87 (July 2012), 11 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. Emily Whiting, John Ochsendorf, and Frédo Durand. 2009. Procedural Modeling of Structurally-sound Masonry Buildings. ACM Trans. Graph. 28, 5, Article 112 (Dec. 2009), 9 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. Yong-Liang Yang, Yi-Jun Yang, Helmut Pottmann, and Niloy J. Mitra. 2011. Shape Space Exploration of Constrained Meshes. ACM Trans. Graph. (Proc. SIGGRAPH Asia) 30, 6 (2011).Google ScholarGoogle Scholar
  54. Jonas Zehnder, Stelian Coros, and Bernhard Thomaszewski. 2016. Designing Structurally-sound Ornamental Curve Networks. ACM Trans. Graph. 35, 4, Article 99 (2016), 99:1--99:10 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. Haisen Zhao, Fanglin Gu, Qi-Xing Huang, Jorge Garcia, Yong Chen, Changhe Tu, Bedrich Benes, Hao Zhang, Daniel Cohen-Or, and Baoquan Chen. 2016. Connected Fermat Spirals for Layered Fabrication. ACM Trans. Graph. 35, 4, Article 100 (July 2016), 10 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. Henrik Zimmer and Leif Kobbelt. 2014. Zometool rationalization of freeform surfaces. IEEE Trans. on Visualization and Computer Graphics 20, 10 (2014).Google ScholarGoogle Scholar

Recommendations

Comments

Login options

Check if you have access through your login credentials or your institution to get full access on this article.

Sign in

Full Access

  • Published in

    cover image ACM Transactions on Graphics
    ACM Transactions on Graphics  Volume 36, Issue 4
    August 2017
    2155 pages
    ISSN:0730-0301
    EISSN:1557-7368
    DOI:10.1145/3072959
    Issue’s Table of Contents

    Copyright © 2017 ACM

    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    • Published: 20 July 2017
    Published in tog Volume 36, Issue 4

    Permissions

    Request permissions about this article.

    Request Permissions

    Check for updates

    Qualifiers

    • research-article

PDF Format

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader