skip to main content
10.1145/3082031.3083239acmconferencesArticle/Chapter ViewAbstractPublication Pagesih-n-mmsecConference Proceedingsconference-collections
research-article
Public Access
Best Student Paper

Nonlinear Feature Normalization in Steganalysis

Published:20 June 2017Publication History

ABSTRACT

In this paper, we propose a method for normalization of rich feature sets to improve detection accuracy of simple classifiers in steganalysis. It consists of two steps: 1) replacing random subsets of empirical joint probability mass functions (co-occurrences) by their conditional probabilities and 2) applying a non-linear normalization to each element of the feature vector by forcing its marginal distribution over covers to be uniform. We call the first step random conditioning and the second step feature uniformization. When applied to maxSRMd2 features in combination with simple classifiers, we observe a gain in detection accuracy across all tested stego algorithms and payloads. For better insight, we investigate the gain for two image formats. The proposed normalization has a very low computational complexity and does not require any feedback from the stego class.

References

  1. P. Bas, T. Filler, and T. Pevný. 2011. Break Our Steganographic System -- the Ins and Outs of Organizing BOSS. In Information Hiding, 13th International Conference (Lecture Notes in Computer Science), T. Filler, T. Pevny, A. Ker, and S. Craver (Eds.), Vol. 6958. Prague, Czech Republic, 59--70. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. M. Boroumand and J. Fridrich. 2016. Boosting Steganalysis with Explicit Feature Maps. In 4th ACM IH&MMSec. Workshop, F. Perez-Gonzales, F. Cayre, and P. Bas (Eds.). Vigo, Spain. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. R. Cogranne and J. Fridrich. 2015. Modeling and Extending the Ensemble Classifier for Steganalysis of Digital Images Using Hypothesis Testing Theory. IEEE Transactions on Information Forensics and Security 10, 2 (December 2015), 2627-- 2642.Google ScholarGoogle ScholarCross RefCross Ref
  4. R. Cogranne, V. Sedighi, T. Pevny, and J. Fridrich. 2015. Is Ensemble Classifier Needed for Steganalysis in High-Dimensional Feature Spaces?. In IEEE International Workshop on Information Forensics and Security. Rome, Italy.Google ScholarGoogle Scholar
  5. T. Denemark, M. Boroumand, and J. Fridrich. 2016. Steganalysis Features for Content-Adaptive JPEG Steganography. IEEE Transactions on Information Forensics and Security 11, 8 (Aug 2016), 1736--1746.Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. T. Denemark, V. Sedighi, V. Holub, R. Cogranne, and J. Fridrich. 2014. Selection- Channel-Aware Rich Model for Steganalysis of Digital Images. In IEEE International Workshop on Information Forensics and Security. Atlanta, GA.Google ScholarGoogle Scholar
  7. J. Fridrich and J. Kodovský. 2011. Rich Models for Steganalysis of Digital Images. IEEE Transactions on Information Forensics and Security 7, 3 (June 2011), 868--882. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. M. Goljan, R. Cogranne, and J. Fridrich. 2014. Rich Model for Steganalysis of Color Images. In Sixth IEEE International Workshop on Information Forensics and Security. Atlanta, GA.Google ScholarGoogle Scholar
  9. L. Guo, J. Ni, and Y.-Q. Shi. 2012. An Efficient JPEG Steganographic Scheme Using Uniform Embedding. In Fourth IEEE InternationalWorkshop on Information Forensics and Security. Tenerife, Spain.Google ScholarGoogle Scholar
  10. L. Guo, J. Ni, and Y. Q. Shi. 2014. Uniform Embedding for Efficient JPEG Steganography. IEEE Transactions on Information Forensics and Security 9, 5 (2014). Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. V. Holub and J. Fridrich. 2012. Designing Steganographic Distortion Using Directional Filters. In Fourth IEEE InternationalWorkshop on Information Forensics and Security. Tenerife, Spain.Google ScholarGoogle Scholar
  12. V. Holub and J. Fridrich. 2013. Random Projections of Residuals for Digital Image Steganalysis. IEEE Transactions on Information Forensics and Security 8, 12 (December 2013), 1996--2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. V. Holub and J. Fridrich. 2015. Low-Complexity Features for JPEG Steganalysis Using Undecimated DCT. IEEE Transactions on Information Forensics and Security 10, 2 (Feb 2015), 219--228.Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. V. Holub and J. Fridrich. 2015. Phase-Aware Projection Model for Steganalysis of JPEG Images. In Proceedings SPIE, Electronic Imaging, Media Watermarking, Security, and Forensics 2015, A. Alattar and N. D. Memon (Eds.), Vol. 9409. San Francisco, CA.Google ScholarGoogle Scholar
  15. V. Holub, J. Fridrich, and T. Denemark. 2014. Universal Distortion Design for Steganography in an Arbitrary Domain. EURASIP Journal on Information Security, Special Issue on Revised Selected Papers of the 1st ACM IH and MMS Workshop 2014:1 (2014).Google ScholarGoogle Scholar
  16. K. Jarrett, K. Kavukcuoglu, M. Ranzato, and Y. LeCun. 2009. What is the best Multi-Stage Architecture for Object Recognition?. In 2009 IEEE 12th International Conference on Computer Vision. Kyoto, Japan, 2146--2153.Google ScholarGoogle Scholar
  17. J. Kodovský, J. Fridrich, and V. Holub. 2012. Ensemble Classifiers for Steganalysis of Digital Media. IEEE Transactions on Information Forensics and Security 7, 2 (2012), 432--444. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. A. Krizhevsky, I. Sutskever, and G. E. Hinton. 2012. ImageNet Classification with Deep Convolutional Neural Networks. In Proceedings of Neural Information Processing Systems (NIPS). Lake Tahoe, Nevada. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. J. E. Lennard-Jones. 1924. On the Determination of Molecular Fields. Proc. R. Soc. Lond. A 106, 738 (1924), 463--477.Google ScholarGoogle ScholarCross RefCross Ref
  20. B. Li, M. Wang, and J. Huang. 2014. A new cost function for spatial image steganography. In Proceedings IEEE, International Conference on Image Processing, ICIP. Paris, France.Google ScholarGoogle Scholar
  21. S. Lyu and E. Simoncelli. 2008. Nonlinear image representation using divisive normalization. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Google ScholarGoogle Scholar
  22. F. Perronnin, J. Sanchez, and Yan Liu. 2010. Large-scale image categorization with explicit data embedding. In Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on. 2297--2304.Google ScholarGoogle ScholarCross RefCross Ref
  23. T. Pevny, P. Bas, and J. Fridrich. 2010. Steganalysis by Subtractive Pixel Adjacency Matrix. IEEE Transactions on Information Forensics and Security 5, 2 (June 2010), 215--224. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. T. Pevny, T. Filler, and P. Bas. 2010. Using High-Dimensional Image Models to Perform Highly Undetectable Steganography. In Information Hiding, 12th International Conference (Lecture Notes in Computer Science), R. Böhme and R. Safavi-Naini (Eds.), Vol. 6387. Springer-Verlag, New York, Calgary, Canada, 161--177. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. T. Pevny and J. Fridrich. 2007. Merging Markov and DCT Features for Multi-Class JPEG Steganalysis. In Proceedings SPIE, Electronic Imaging, Security, Steganography, and Watermarking of Multimedia Contents IX, E. J. Delp and P. W. Wong (Eds.), Vol. 6505. San Jose, CA, 3 1--14.Google ScholarGoogle Scholar
  26. N. Pinto, D. D. Cox, and J. J. DiCarlo. 2008. Why is real-world visual object recognition hard? PLOS Computational Biology (January 25 2008).Google ScholarGoogle Scholar
  27. V. Sedighi, R. Cogranne, and J. Fridrich. 2016. Content-Adaptive Steganography by Minimizing Statistical Detectability. IEEE Transactions on Information Forensics and Security 11, 2 (2016), 221--234.Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Y. Q. Shi, C. Chen, and W. Chen. 2006. A Markov Process Based Approach to Effective Attacking JPEG Steganography. In Information Hiding, 8th International Workshop (Lecture Notes in Computer Science), J. L. Camenisch, C. S. Collberg, N. F. Johnson, and P. Sallee (Eds.), Vol. 4437. Springer-Verlag, New York, Alexandria, VA, 249--264. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. X. Song, F. Liu, C. Yang, X. Luo, and Y. Zhang. 2015. Steganalysis of Adaptive JPEG Steganography Using 2D Gabor Filters. In 3rd ACM IH&MMSec. Workshop, P. Comesa na, J. Fridrich, and A. Alattar (Eds.). Portland, Oregon. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. W. Tang, H. Li,W. Luo, and J. Huang. 2014. Adaptive Steganalysis AgainstWOW Embedding Algorithm. In 2nd ACM IH&MMSec. Workshop, A. Uhl, S. Katzenbeisser, R. Kwitt, and A. Piva (Eds.). Salzburg, Austria, 91--96. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. W. Tang, H. Li, W. Luo, and J. Huang. 2016. Adaptive Steganalysis Based on Embedding Probabilities of Pixels. IEEE Transactions on Information Forensics and Security 11, 4 (April 2016), 734--745. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. A. Vedaldi and A. Zisserman. 2012. Efficient Additive Kernels via Explicit Feature Maps. Pattern Analysis and Machine Intelligence, IEEE Transactions on 34, 3 (March 2012), 480--492. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. D. Zou, Y. Q. Shi, W. Su, and G. Xuan. 2006. Steganalysis based on Markov model of thresholded prediction-error image. In Proceedings IEEE, International Conference on Multimedia and Expo. Toronto, Canada, 1365--1368.Google ScholarGoogle Scholar

Index Terms

  1. Nonlinear Feature Normalization in Steganalysis

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in
        • Published in

          cover image ACM Conferences
          IH&MMSec '17: Proceedings of the 5th ACM Workshop on Information Hiding and Multimedia Security
          June 2017
          180 pages
          ISBN:9781450350617
          DOI:10.1145/3082031

          Copyright © 2017 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 20 June 2017

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article

          Acceptance Rates

          IH&MMSec '17 Paper Acceptance Rate18of34submissions,53%Overall Acceptance Rate128of318submissions,40%

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader