skip to main content
10.1145/3087604.3087633acmotherconferencesArticle/Chapter ViewAbstractPublication PagesissacConference Proceedingsconference-collections
research-article

The Frobenius FFT

Published: 23 July 2017 Publication History

Abstract

Let Fq be the finite field with q elements and let ω be a primitive n-th root of unity in an extension field Fqd of Fq. Given a polynomial P ∈ Fq [x] of degree less than n, we will show that its discrete Fourier transform (P (ω0), ..., P (ωn - 1)) ∈ Fqdn can be computed essentially d times faster than the discrete Fourier transform of a polynomial Q ∈ Fqd [x] of degree less than n, in many cases. This result is achieved by exploiting the symmetries provided by the Frobenius automorphism of Fqd over Fq.

References

[1]
Auslander, J. R. Johnson, and R. W. Johnson. An equivariant Fast Fourier Transform algorithm. Drexel University Technical Report DU-MCS-96-02, 1996.
[2]
David H Bailey. Ffts in external of hierarchical memory. In Proceedings of the 1989 ACM/IEEE conference on Supercomputing, pages 234--242. ACM, 1989.
[3]
D. Bergland. A fast Fourier transform algorithm for real-valued series. Communications of the ACM, 11(10):703--710, 1968.
[4]
Bergmann. The fast Fourier transform and fast wavelet transform for patterns on the torus. Applied and Computational Harmonic Analysis, 2012. In Press.
[5]
Peter Blessenohl. On the normal basis theorem. Note di Matematica, 27(1):5--10, 2007.
[6]
o I. Bluestein. A linear filtering approach to the computation of discrete Fourier transform. IEEE Transactions on Audio and Electroacoustics, 18(4):451--455, 1970.
[7]
W. Cooley and J.W. Tukey. An algorithm for the machine calculation of complex Fourier series. Math. Computat., 19:297--301, 1965.
[8]
von zur Gathen and J. Gerhard. Modern Computer Algebra. Cambridge University Press, New York, NY, USA, 3rd edition, 2013.
[9]
F. Gauss. Nachlass: Theoria interpolationis methodo nova tractata. In Werke, volume 3, pages 265--330. Königliche Gesellschaft der Wissenschaften, Göttingen, 1866.
[10]
J. Good. The interaction algorithm and practical Fourier analysis. Journal of the Royal Statistical Society, Series B. 20(2):361--372, 1958.
[11]
Guessoum and R. Mersereau. Fast algorithms for the multidimensional discrete Fourier transform. IEEE Transactions on Acoustics, Speech and Signal Processing, 34(4):937--943, 1986.
[12]
Harvey, J. van der Hoeven, and G. Lecerf. Fast polynomial multiplication over F260. In Proc. ISSAC '16, pages 255--262, New York, NY, USA, 2016. ACM.
[13]
Harvey, J. van der Hoeven, and G. Lecerf. Faster polynomial multiplication over finite fields. J. ACM, 63(6), 2017. Article 52.
[14]
van der Hoeven. The truncated Fourier transform and applications. In J. Gutierrez, editor, Proc. ISSAC 2004, pages 290--296, Univ. of Cantabria, Santander, Spain, July 4--7 2004.
[15]
van der Hoeven. Notes on the Truncated Fourier Transform. Technical Report 2005--5, Université Paris-Sud, Orsay, France, 2005.
[16]
van der Hoeven, R. Lebreton, and É. Schost. Structured FFT and TFT: symmetric and lattice polynomials. In Proc. ISSAC '13, pages 355--362, Boston, USA, June 2013.
[17]
van der Hoeven and G. Lecerf. Modular composition via factorization. Technical report, HAL, 2017. http://hal.archives-ouvertes.fr/hal-01457074.
[18]
Johnson and X. Xu. Generating symmetric DFTs and equivariant FFT algorithms. In ISSAC'07, pages 195--202. ACM, 2007.
[19]
S. Kedlaya and C. Umans. Fast polynomial factorization and modular composition. SIAM J. Comput., 40(6):1767--1802, 2011.
[20]
Kudlicki, M. Rowicka, and Z. Otwinowski. The crystallographic Fast Fourier Transform. Recursive symmetry reduction. Acta Cryst., A63:465--480, 2007.
[21]
Larrieu. The truncated fourier transform for mixed radices. Technical report, HAL, 2016. http://hal.archives-ouvertes.fr/hal-01419442.
[22]
an-Louis Nicolas and Guy Robin. Highly composite numbers by Srinivasa Ramanujan. The Ramanujan Journal, 1(2):119--153, 1997.
[23]
H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.
[24]
M. Rader. Discrete Fourier transforms when the number of data samples is prime. Proc. IEEE, 56:1107--1108, 1968.
[25]
V. Sorensen, D.L. Jones, M.T. Heideman, and C.S. Burrus. Real-valued fast Fourier transform algorithm. IEEE Transactions on Acoustics, Speech and Signal Processing, 35(6):849--863, 1987.
[26]
F. Ten Eyck. Crystallographic Fast Fourier Transform. Acta Cryst., A29:183--191, 1973.
[27]
Vince and X. Zheng. Computing the Discrete Fourier Transform on a hexagonal lattice. Journal of Mathematical Imaging and Vision, 28:125--133, 2007.

Cited By

View all
  • (2024)Sparse polynomial interpolation: faster strategies over finite fieldsApplicable Algebra in Engineering, Communication and Computing10.1007/s00200-024-00655-5Online publication date: 27-Apr-2024
  • (2020)Fast multipoint evaluation and interpolation of polynomials in the LCH-basis over FProceedings of the 45th International Symposium on Symbolic and Algebraic Computation10.1145/3373207.3404009(344-351)Online publication date: 20-Jul-2020
  • (2018)Frobenius Additive Fast Fourier TransformProceedings of the 2018 ACM International Symposium on Symbolic and Algebraic Computation10.1145/3208976.3208998(263-270)Online publication date: 11-Jul-2018
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Other conferences
ISSAC '17: Proceedings of the 2017 ACM International Symposium on Symbolic and Algebraic Computation
July 2017
466 pages
ISBN:9781450350648
DOI:10.1145/3087604
Publication rights licensed to ACM. ACM acknowledges that this contribution was authored or co-authored by an employee, contractor or affiliate of a national government. As such, the Government retains a nonexclusive, royalty-free right to publish or reproduce this article, or to allow others to do so, for Government purposes only.

In-Cooperation

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 23 July 2017

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. FFT
  2. complexity bound
  3. finite field
  4. frobenius automorphism

Qualifiers

  • Research-article

Conference

ISSAC '17

Acceptance Rates

Overall Acceptance Rate 395 of 838 submissions, 47%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)20
  • Downloads (Last 6 weeks)2
Reflects downloads up to 03 Mar 2025

Other Metrics

Citations

Cited By

View all
  • (2024)Sparse polynomial interpolation: faster strategies over finite fieldsApplicable Algebra in Engineering, Communication and Computing10.1007/s00200-024-00655-5Online publication date: 27-Apr-2024
  • (2020)Fast multipoint evaluation and interpolation of polynomials in the LCH-basis over FProceedings of the 45th International Symposium on Symbolic and Algebraic Computation10.1145/3373207.3404009(344-351)Online publication date: 20-Jul-2020
  • (2018)Frobenius Additive Fast Fourier TransformProceedings of the 2018 ACM International Symposium on Symbolic and Algebraic Computation10.1145/3208976.3208998(263-270)Online publication date: 11-Jul-2018
  • (2017)Implementing Fast Carryless MultiplicationMathematical Aspects of Computer and Information Sciences10.1007/978-3-319-72453-9_9(121-136)Online publication date: 21-Dec-2017

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media