skip to main content
research-article

Towards Visualization Recommendation Systems

Published: 11 May 2017 Publication History

Abstract

Data visualization is often used as the first step while performing a variety of analytical tasks. With the advent of large, high-dimensional datasets and significant interest in data science, there is a need for tools that can support rapid visual analysis. In this paper we describe our vision for a new class of visualization systems, namely visualization recommendation systems, that can automatically identify and interactively recommend visualizations relevant to an analytical task. We detail the key requirements and design considerations for a visualization recommendation system. We also identify a number of challenges in realizing this vision and describe some approaches to address them.

References

[1]
Spotfire, http://www.tibco.com/company/news/releases/2015/tibcoannounces-recommendations-for-spotfire-cloud. {Online; accessed 17-Aug-2015}.
[2]
Tableau showme. {Online; accessed 17-Aug-2015}.
[3]
S. Acharya et al. The aqua approximate query answering system. SIGMOD '99, pages 574--576, New York, NY, USA, 1999. ACM.
[4]
G. Adomavicius and A. Tuzhilin. Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. TKDE, 17(6):734--749, 2005.
[5]
S. Agarwal et al. Blinkdb: Queries with bounded errors and bounded response times on very large data. EuroSys '13, 2013.
[6]
Y. Benjamini and D. Yekutieli. The control of the false discovery rate in multiple testing under dependency. Annals of statistics, pages 1165--1188, 2001.
[7]
J. Bobadilla, F. Ortega, A. Hernando, and A. Gutiérrez. Recommender systems survey. Knowledge-Based Systems, 46:109--132, 2013.
[8]
C. E. Bonferroni. Teoria statistica delle classi e calcolo delle probabilit`a. Pubblicazioni del R Istituto Superiore di Scienze Economiche e Commerciali di Firenze, 8:3--62, 1936.
[9]
J. Boy, R. A. Rensink, E. Bertini, and J.-D. Fekete. A principled way of assessing visualization literacy. IEEE transactions on visualization and computer graphics, 20(12):1963--1972, 2014.
[10]
D. Feldman, M. Schmidt, and C. Sohler. Turning big data into tiny data: Constant-size coresets for k-means, pca and projective clustering. SODA '13, pages 1434--1453, 2013.
[11]
J. B. Garfield. Assessing statistical reasoning. Statistics Education Research Journal, 2(1):22--38, 2003.
[12]
D. Gotz and Z. Wen. Behavior-driven visualization recommendation. IUI '09, pages 315--324, New York, NY, USA, 2009. ACM.
[13]
T. M. Green, W. Ribarsky, and B. Fisher. Building and applying a human cognition model for visual analytics. Information Visualization, 8(1):1--13, Jan. 2009.
[14]
P. Hanrahan. Analytic database technologies for a new kind of user: the data enthusiast. In SIGMOD Conference, pages 577--578, 2012.
[15]
I. Herman, G. Melancón, and M. S. Marshall. Graph visualization and navigation in information visualization: A survey. TVCG, 6(1):24--43, 2000.
[16]
S. Holland, M. Ester, and W. Kießling. Preference mining: A novel approach on mining user preferences for personalized applications. In PKDD 2003, pages 204--216. Springer, 2003.
[17]
G. Holmes, A. Donkin, and I. H. Witten. Weka: A machine learning workbench. In Conf. on Intelligent Information Systems '94, pages 357--361. IEEE, 1994.
[18]
E. Horvitz. Principles of mixed-initiative user interfaces. CHI'99, pages 159--166. ACM, 1999.
[19]
S. Kandel et al. Profiler: integrated statistical analysis and visualization for data quality assessment. In AVI, pages 547--554, 2012.
[20]
D. Keim et al. Information visualization and visual data mining. TVCG, 8(1):1--8, 2002.
[21]
A. Key, B. Howe, D. Perry, and C. Aragon. Vizdeck: Self-organizing dashboards for visual analytics. SIGMOD '12, pages 681--684, 2012.
[22]
A. Kim, E. Blais, A. Parameswaran, P. Indyk, S. Madden, and R. Rubinfeld. Rapid sampling for visualizations with ordering guarantees. Proc. VLDB Endow., 8(5):521--532, Jan. 2015.
[23]
M. Kreuseler, N. Lopez, and H. Schumann. A scalable framework for information visualization. INFOVIS '00, pages 27--, Washington, DC, USA, 2000. IEEE Computer Society.
[24]
G. Linden, B. Smith, and J. York. Amazon. com recommendations: Item-to-item collaborative filtering. Internet Computing, IEEE, 7(1):76--80, 2003.
[25]
L. Lins, J. T. Klosowski, and C. Scheidegger. Nanocubes for real--time exploration of spatiotemporal datasets. IEEE Transactions on Visualization and Computer Graphics, 19(12):2456--2465, 2013.
[26]
S. Liu, W. Cui, Y. Wu, and M. Liu. A survey on information visualization: recent advances and challenges. The Visual Computer, 30(12):1373--1393, 2014.
[27]
J. Mackinlay. Automating the design of graphical presentations of relational information. ACM Trans. Graph., 5(2):110--141, Apr. 1986.
[28]
J. D. Mackinlay et al. Show me: Automatic presentation for visual analysis. IEEE Trans. Vis. Comput. Graph., 13(6):1137--1144, 2007.
[29]
B. Mobasher, R. Cooley, and J. Srivastava. Automatic personalization based on web usage mining. Commun. ACM, 43(8):142--151, Aug. 2000.
[30]
K. Morton et al. Support the data enthusiast: Challenges for next-generation data--analysis systems. PVLDB, 7(6):453--456, 2014.
[31]
C. H. Papadimitriou and M. Yannakakis. Multiobjective query optimization. In P. Buneman, editor, PODS. ACM, 2001.
[32]
A. Parameswaran, N. Polyzotis, and H. Garcia-Molina. Seedb: Visualizing database queries efficiently. PVLDB, 7(4), 2013.
[33]
Pedregosa et al. Scikit-learn: Machine learning in python. The Journal of Machine Learning Research, 12:2825--2830, 2011.
[34]
T. K. Sellis. Multiple-query optimization. ACM Trans. Database Syst., 13(1):23--52, Mar. 1988.
[35]
J. Seo and B. Shneiderman. A rank-by-feature framework for interactive exploration of multidimensional data. Information Visualization, 4(2):96--113, 2005.
[36]
T. Siddiqui et al. Fast--forwarding to desired visualizations with zenvisage. In CIDR, 2017.
[37]
T. Siddiqui, A. Kim, J. Lee, K. Karahalios, and A. Parameswaran. Effortless visual data exploration with zenvisage: An expressive and interactive visual analytics system. In PVLDB, 2016.
[38]
S. T. Tokdar and R. E. Kass. Importance sampling: a review. Wiley Interdisciplinary Reviews: Computational Statistics, 2(1):54--60, 2010.
[39]
S. Trewin. Knowledge-based recommender systems. Encyclopedia of Library and Information Science: Volume 69-Supplement 32, page 180, 2000.
[40]
M. Vartak, S. Rahman, S. Madden, A. Parameswaran, and N. Polyzotis. Seedb: efficient data-driven visualization recommendations to support visual analytics. VLDB, 8(13):2182--2193, 2015.
[41]
J. Vermorel and M. Mohri. Multi-armed bandit algorithms and empirical evaluation. In ECML, pages 437--448, 2005.
[42]
M. Voigt et al. Context-aware recommendation of visualization components. In eKNOW'12, pages 101--109, 2012.
[43]
L. Wasserman. All of Statistics. Springer, 2003.
[44]
L. Wilkinson, A. Anand, and R. L. Grossman. Graph-theoretic scagnostics. In INFOVIS, volume 5, page 21, 2005.
[45]
G. Wills and L. Wilkinson. Autovis: automatic visualization. Information Visualization, 9(1):47--69, 2010.
[46]
K. Wongsuphasawat et al. Voyager: Exploratory analysis via faceted browsing of visualization recommendations. IEEE Trans. Visualization & Comp. Graphics, 2015.

Cited By

View all
  • (2024)Future Directions and Innovations in the Field of Business Operations Through Data ToolsData Visualization Tools for Business Applications10.4018/979-8-3693-6537-3.ch016(369-398)Online publication date: 13-Sep-2024
  • (2024)TaskFinder: A Semantics-Based Methodology for Visualization Task RecommendationAnalytics10.3390/analytics30300153:3(255-275)Online publication date: 4-Jul-2024
  • (2024)Automated Recommendation of Aggregate Visualizations for Crowdfunding DataAlgorithms10.3390/a1706024417:6(244)Online publication date: 6-Jun-2024
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM SIGMOD Record
ACM SIGMOD Record  Volume 45, Issue 4
December 2016
48 pages
ISSN:0163-5808
DOI:10.1145/3092931
Issue’s Table of Contents

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 11 May 2017
Published in SIGMOD Volume 45, Issue 4

Check for updates

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)112
  • Downloads (Last 6 weeks)8
Reflects downloads up to 24 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2024)Future Directions and Innovations in the Field of Business Operations Through Data ToolsData Visualization Tools for Business Applications10.4018/979-8-3693-6537-3.ch016(369-398)Online publication date: 13-Sep-2024
  • (2024)TaskFinder: A Semantics-Based Methodology for Visualization Task RecommendationAnalytics10.3390/analytics30300153:3(255-275)Online publication date: 4-Jul-2024
  • (2024)Automated Recommendation of Aggregate Visualizations for Crowdfunding DataAlgorithms10.3390/a1706024417:6(244)Online publication date: 6-Jun-2024
  • (2024)Marrying Dialogue Systems with Data Visualization: Interactive Data Visualization Generation from Natural Language ConversationsProceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining10.1145/3637528.3671935(2733-2744)Online publication date: 25-Aug-2024
  • (2024)Visual Analytics for Understanding Draco's Knowledge BaseIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2023.332691230:1(392-402)Online publication date: 1-Jan-2024
  • (2024)Demonstration of FeVisQA: Free-Form Question Answering over Data Visualization2024 IEEE 40th International Conference on Data Engineering (ICDE)10.1109/ICDE60146.2024.00417(5417-5420)Online publication date: 13-May-2024
  • (2024)The Visualization JUDGE: Can Multimodal Foundation Models Guide Visualization Design Through Visual Perception?2024 IEEE Evaluation and Beyond - Methodological Approaches for Visualization (BELIV)10.1109/BELIV64461.2024.00012(60-70)Online publication date: 14-Oct-2024
  • (2024)GeoVis: a data-driven geographic visualization recommendation system via latent space encodingJournal of Visualization10.1007/s12650-024-00986-y27:4(603-622)Online publication date: 16-Apr-2024
  • (2024)ScaleViz: Scaling Visualization Recommendation Models on Large DataAdvances in Knowledge Discovery and Data Mining10.1007/978-981-97-2262-4_8(93-104)Online publication date: 7-May-2024
  • (2024)AI-Assisted Analytics – An Automated Approach to Data VisualizationAdvances in Conceptual Modeling10.1007/978-3-031-75599-6_24(343-358)Online publication date: 29-Oct-2024
  • Show More Cited By

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media