skip to main content
10.1145/3093241.3093269acmotherconferencesArticle/Chapter ViewAbstractPublication PagesiccdaConference Proceedingsconference-collections
research-article

Noise-Tolerant Neural Network Approach for Electrocardiogram Signal Classification

Published:19 May 2017Publication History

ABSTRACT

Several machine learning approaches have been proposed for classifying electrocardiogram (ECG) signals. Most of these use adaptive filtering techniques to reduce the noise corruption embedded in the signals. However, band-pass filters can affect the estimation of morphological parameters and result in misleading interpretation. We propose a noise-tolerant neural network (NN) approach, based on artificial noise injection, to improve the generalization capability of the resulting model. The NN classifier initially discriminated normal and abnormal heartbeat patterns in simulated ECG signals with minor, moderate, severe, and extreme noise, with an average accuracy of 99.2%, 95.1%, 91.4%, and 85.2% respectively. Ultimately we performed a fairly accurate recognition of four types of cardiac anomalies for single lead of raw ECG signals, obtained an overall classification accuracy of 95.7%. Therefore, is a useful tool for the detection and diagnosis of cardiac abnormalities.

References

  1. Hurxthal, L. M. 1934. Clinical interpretation of the electrocardiogram. N. Engl. J. Med. 211, 10, 431--437. Google ScholarGoogle ScholarCross RefCross Ref
  2. Wolff, A. R., Long, S., McComb, J. M., Richley, D., and Mercer, P. 2012. The gap between training and provision: a primary-care based ECG survey in North-East England. Br. J. Cardiol. 19, 1, 38--40. Google ScholarGoogle ScholarCross RefCross Ref
  3. Richley, D. 2013. New training and qualifications in electrocardiography. Br. J. Card. Nurs. 2013, 8, 1, 38--42. Google ScholarGoogle ScholarCross RefCross Ref
  4. Som, S. 2015. Nurse practitioners (and other physician extenders) are not an appropriate replacement for expert physician electrocardiogram readers in routine clinical practice. J. Am. Coll. Cardiol. 65, 1, 106--107. Google ScholarGoogle ScholarCross RefCross Ref
  5. Fitria, D., Ma'sum, M. A., Imah, E., and Gunawan, A. A. 2014. Automatic arrhythmias detection using various types of artificial neural network based learning vector quantization (LVQ). J. Comput. Sci. Inf. 7, 2, 93--103.Google ScholarGoogle Scholar
  6. Javadi, M., Arani, S. A. A. A, Sajedin, A., and Ebrahimpour, R. 2013. Classification of ECG arrhythmia by a modular neural network based on mixture of experts and negatively correlated learning. Biomed. Signal Process. Control. 8, 3, 289--296. Google ScholarGoogle ScholarCross RefCross Ref
  7. Rohan, M. D., and Patil, A. J. 2012. Layered approach for ECG beat classification utilizing neural network. Bioinformatics. 2, 6, 1495--1500.Google ScholarGoogle Scholar
  8. Wang, J. S., Chiang, W. C., Hsu, Y. L., and Yang, Y. T. C. 2013. ECG arrhythmia classification using a probabilistic neural network with a feature reduction method. Neurocomputing. 116, 38--45. Google ScholarGoogle ScholarCross RefCross Ref
  9. Karpagachelvi, S., Arthanari, M., and Sivakumar, M. 2012. Classification of electrocardiogram signals with support vector machines and extreme learning machine. Neural Comput. Appl. 21, 6, 1331--1339. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Khazaee, A., and Zadeh, A. E. 2014. ECG beat classification using particle swarm optimization and support vector machine. Front. Comput. Sci. 8, 2, 217--231. Google ScholarGoogle ScholarCross RefCross Ref
  11. Yeh, Y. C. 2012. An analysis of ECG for determining heartbeat case by using the principal component analysis and fuzzy logic. Int. J. Fuzzy Syst.14, 2, 233--241.Google ScholarGoogle Scholar
  12. Chua, T. W., and Tan, W. W. 2011. Non-singleton genetic fuzzy logic system for arrhythmias classification. Eng. Appl. Artif. Intell. 24, 2, 251--259. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Kher, R., Pawar, T., Thakar, V., and Shah, H. 2015. Physical activities recognition from ambulatory ECG signals using neuro-fuzzy classifiers and support vector machines. J. Med. Eng. Technol. 39, 2, 138--152. Google ScholarGoogle ScholarCross RefCross Ref
  14. Meau, Y. P., Ibrahim, F., Narainasamy, S. A., and Omar, R. 2006. Intelligent classification of electrocardiogram (ECG) signal using extended Kalman Filter (EKF) based neuro fuzzy system. Comput. Methods Programs Biomed. 82, 2, 157--168. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Zadeh, A. E., Khazaee, A., and Ranaee, V. 2010. Classification of the electrocardiogram signals using supervised classifiers and efficient features. Comput. Methods Programs Biomed. 99, 2, 179--194. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Micó, P., Mora, M., Cuesta-Frau, D., and Aboy, M. 2010. Automatic segmentation of long-term ECG signals corrupted with broadband noise based on sample entropy. Comput. Methods Programs Biomed. 98, 2, 118--129. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Choudhary, M., and Narwaria, R. P. 2012. Suppression of noise in ECG signal using low pass IIR filters. Int. J. Electron. Comput. Sci. Eng. 1, 4, 2238--2243.Google ScholarGoogle Scholar
  18. Li, Q., and Clifford, G. D. 2012. Signal quality and data fusion for false alarm reduction in the intensive care unit. J. Electrocardiol. 45, 6, 596--603. Google ScholarGoogle ScholarCross RefCross Ref
  19. Oweis, R., and Hijazi, L. 2006. A computer-aided ECG diagnostic tool. Comput. Methods Programs Biomed. 81, 3, 279--284. Google ScholarGoogle ScholarCross RefCross Ref
  20. Übeyli, E. D. 2009. Adaptive neuro-fuzzy inference system for classification of ECG signals using Lyapunov exponents. Comput. Methods Programs Biomed. 93, 3, 313--321. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Das, M. K., and Ari, S. 2013. ECG arrhythmia recognition using artificial neural network with S-transform based effective features. In Proceeding of Annual IEEE India Conference (Mumbai, India, December 13-15, 2013) INDICON '13. IEEE, 1--6. Google ScholarGoogle ScholarCross RefCross Ref
  22. Li, Q., Rajagopalan, C., and Clifford, G. D. 2014. A machine learning approach to multi-level ECG signal quality classification. Comput. Methods Programs Biomed. 117, 3, 435--447. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Redmond, S. J., Xie, Y., Chang, D., Basilakis, J., and Lovell N. H. 2012. Electrocardiogram signal quality measures for unsupervised telehealth environments. Physiol. Meas. 33, 9, 1517--1533. Google ScholarGoogle ScholarCross RefCross Ref
  24. Ambrose, M. 2008. ECG. Interpretación clínica. Manual Moderno. Buenos Aires.Google ScholarGoogle Scholar
  25. Chierici, F., Pignagnoli, L., and Embriaco, D. 2010. Modeling of the hydroacoustic signal and tsunami wave generated by seafloor motion including a porous seabed. J. Geophys. Res. 115, C3, 1--15. Google ScholarGoogle ScholarCross RefCross Ref
  26. Islam, M. K., Haque, A. N., Tangim, G., Ahammad, T., and Khondokar, M. R. H. 2012. Study and analysis of ECG signal using MATLAB & LABVIEW as effective tools. Int. J. Comput. Electr. Eng. 4, 3, 404--408. Google ScholarGoogle ScholarCross RefCross Ref
  27. Guda, M., Gasser, S., and El Mahallawy, M. S. 2014. MATLAB simulation comparison for different adaptive noise cancelation algorithms. In Proceedings of the International Conference on Digital Information, Networking, and Wireless Communications (Ostrava, Czech Republic, June 24-26, 2014). DINWC '14, Technical University of Ostrava, 68--73.Google ScholarGoogle Scholar
  28. Bille, K., Figueiras, D., Schamasch, P., Kappenberger, L., Brenner, J.,I., Meijboom, F. J., and Meijboom, E.J. 2006. Sudden cardiac death in athletes: the Lausanne Recommendations. Eur. J. Cardiovasc. Prev. Rehabil. 13, 6, 859--875. Google ScholarGoogle ScholarCross RefCross Ref
  29. Cools, E., and Missant, C. 2014. Junctional ectopic tachycardia after congenital heart surgery. Acta Anaesthesiol. Belg. 65, 1, 1--8.Google ScholarGoogle Scholar
  30. Das, M.K., Khan, B., Jacob, S., Kumar, A., and Mahenthiran, J. 2006. Significance of a fragmented QRS complex versus a Q wave in patients with coronary artery disease. Circulation. 113, 21, 2495--2501. Google ScholarGoogle ScholarCross RefCross Ref
  31. Valo, M., Moller, A., and Teupe, C. 2015. Markers of myocardial ischemia in patients with diabetes mellitus and severe obstructive sleep apnea impact of continuous positive airway pressure therapy. J. Diabetes Metab. 6, 492, 2--5.Google ScholarGoogle Scholar
  32. Bakhoya, V. N., Kurl, S., and Laukkanen, J. A. 2014. T-wave inversion on electrocardiogram is related to the risk of acute coronary syndrome in the general population. Eur. J. Prev. Cardiol. 21, 4, 500--506. Google ScholarGoogle ScholarCross RefCross Ref
  33. Bousseljot, R., Kreiseler, D., and Schnabel, A. 1995. Nutzung der EKG-Signaldatenbank CARDIODAT der PTB über das Internet. Biomed. Tech. 40, s1, 317--318.Google ScholarGoogle Scholar
  34. Mainardi, L., Sornmo, L., and Cerutti, S. 2008. Understanding atrial fibrillation: the signal processing contribution. Morgan & Claypool Publishers, San Rafael.Google ScholarGoogle Scholar
  35. Ramli, A. B., and Ahmad, P. A. 2003. Correlation analysis for abnormal ECG signal features extraction. In Proceedings of 4th National Conference on Telecommunication Technology (Shah Alam, Malaysia, January 14-15, 2003). NCTT '03. IEEE, 232--237. Google ScholarGoogle ScholarCross RefCross Ref
  36. Szabó, B. T., van der Vaart, A. W., and van Zanten, J. H. 2013. mpirica a es sca in of aussian priors in the white noise model. Electron. J. Stat. 7, 991--1018. Google ScholarGoogle ScholarCross RefCross Ref
  37. Grandvalet, Y, and Canu, S. 1995. Comments on noise injection into inputs in back propagation learning. IEEE Trans. Syst. Man Cybern. 25, 4, 678--681. Google ScholarGoogle ScholarCross RefCross Ref
  38. An, G. 1996. The effects of adding noise during backpropagation training on a generalization performance. Neural Comput. 8, 3, 643--674. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Moody, G. B., and Mark, R. G. 2001. The impact of the MIT-BIH arrhythmia database. IEEE Eng. Med. Biol. Mag. 20, 3, 45--50. Google ScholarGoogle ScholarCross RefCross Ref
  40. Asl, B. M., Sharafat, A. R., and Setarehdan, S. K. 2012. An adaptive backpropagation neural network for arrhythmia classification using RR interval signal. Neural Netw. World. 6, 12, 535--54.Google ScholarGoogle ScholarCross RefCross Ref
  41. Garg, P., and Sharma, A. 2015. Detection of normal ECG and arrhythmia using artificial neural network system. Int. J. Eng. Res. Sci. Technol. 4, 1, 1--13.Google ScholarGoogle Scholar
  42. Moses, D. 2015. A survey of data mining algorithms used in cardiovascular disease diagnosis from multi-lead ECG data. Kuwait J. Sci. 42, 2, 206--235.Google ScholarGoogle Scholar
  43. Jadhav, S., Nalbalwar, S., and Ghatol, A. 2012. Performance evaluation of generalized feedforward neural network based ECG arrhythmia classifier. Int. J. Comput. Sci. Issues. 9, 4, 379--384.Google ScholarGoogle Scholar
  44. Kumar, R., Gupta, R., Jyoti, K., and Ranjan, A. K. 2015. AT89C51 microcontroller based medical two channel ECG module and body temperature measurement with graphics LCD. Int. J. Adv. Res. Comput. Sci. Softw. Eng. 5, 5, 1321--1326.Google ScholarGoogle Scholar
  45. Longini, R. L., Giolma, J. P., Wall III, C., and Quick, R. F. 1975. Filtering without phase shift. IEEE Trans. Biomed. Eng. BME-22, 5, 432--433. Google ScholarGoogle ScholarCross RefCross Ref
  46. Valverde, E. R., Quinteiro, R. A., Bertran, G. C., Arini, P. D., Glenny, P., and Biagetti, M.O. 1998. Influence of filtering techniques on the time domain analysis of signal-averaged P wave electrocardiogram. J. Cardiovasc. Electrophysiol. 9, 3, 253--260. Google ScholarGoogle ScholarCross RefCross Ref
  47. Lęski, J. M., Henzel, N. 2005. ECG baseline wander and powerline interference reduction using nonlinear filter bank. Signal Process. 85, 4, 781--793. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Gregg, R. E., Zhou S. H., Lindauer, J. M., Helfenbein, E. D., and Giuliano, K. K. 2008. What is inside the electrocardiograph?. J. Electrocardiol. 41, 1, 8--14. Google ScholarGoogle ScholarCross RefCross Ref
  49. Censi, F., Calcagnini, G., Triventi, M., Mattei, E., Bartolini, P., Corazza, I., and Boriani, G. 2009. Effect of high-pass filtering on ECG signal on the analysis of patients prone to atrial fibrillation. Ann. Ist. Super. Sanità. 45, 4, 427--431. Google ScholarGoogle ScholarCross RefCross Ref
  50. Berson, A.S., and Pipberger, H.V. 1966. The low-frequency response of electrocardiographs, a frequent source of recording errors. Am. Heart J. 71, 6, 779--789. Google ScholarGoogle ScholarCross RefCross Ref
  51. Bragg-Remschel, D. A., Anderson, C. M., and Winkle, R. A. 1982. Frequency response characteristics of ambulatory ECG monitoring systems and their implications for ST segment analysis. Am. Heart J. 1982, 103, 1, 20--31. Google ScholarGoogle ScholarCross RefCross Ref
  52. Tayler, D., and Vincent, R. 1983. Signal distortion in the electrocardiogram due to inadequate phase response. IEEE Trans Biomed Eng. BME-30, 6, 352--356. Google ScholarGoogle ScholarCross RefCross Ref
  53. Tayler, D. I, and Vincent, R. 1985. Artefactual ST segment abnormalities due to electrocardiograph design. Br. Heart J. 54, 2, 121--128. Google ScholarGoogle ScholarCross RefCross Ref
  54. Burri, H., Sunthorn, H., and Shah, D. 2006. Simulation of anteroseptal myocardial infarction by electrocardiographic filters. J. Electrocardiol. 39, 3, 253--258. Google ScholarGoogle ScholarCross RefCross Ref
  55. Buendía-Fuentes, F., Arnau-Vives, M. A., Arnau-Vives, A., Jiménez-Jiménez, Y., Rueda-Soriano, J., Zorio-Grima, E., Osa-Sáez, A., Martínez-Dolz, L. V., Almenar-Bonet, L., and Palencia-Pérez, M. A. 2012. High-bandpass filters in electrocardiography: source of error in the interpretation of the ST segment. Int. Sch. Res. Notices Cardiol. 2012, 1--10. Google ScholarGoogle ScholarCross RefCross Ref
  56. Li, B., Tsao, Y., and Sim, K. C. 2013. An investigation of spectral restoration algorithms for deep neural networks based noise robust speech recognition. In Proceedings of 14th Annual Conference of the International Speech Communication Association (Lyon, France, August 25-29, 2014). INTERSPEECH '13. Curran Associates, Inc, 3002--3006.Google ScholarGoogle Scholar
  57. Yin, S., Liu, C., Zhang, Z., Lin, Y., Wang, D., Tejedor, J., Fang-Zhen, T., and Li, Y. 2015. Noisy training for deep neural networks in speech recognition. EURASIP J. Audio Spee. 2015, 1, 1--14. Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Noise-Tolerant Neural Network Approach for Electrocardiogram Signal Classification

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Other conferences
      ICCDA '17: Proceedings of the International Conference on Compute and Data Analysis
      May 2017
      307 pages
      ISBN:9781450352413
      DOI:10.1145/3093241

      Copyright © 2017 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 19 May 2017

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article
      • Research
      • Refereed limited

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader