skip to main content
10.1145/3093241.3093286acmotherconferencesArticle/Chapter ViewAbstractPublication PagesiccdaConference Proceedingsconference-collections
research-article

Predicting Obesity Using Longitudinal Near Infra-Red Spectroscopy (NIRS) Data

Published: 19 May 2017 Publication History

Abstract

Globally there has been a dramatic increase in obesity [1]. Thus understanding, predicting and managing obesity has the potential to save lives and billions. Behavioral studies suggest that binging by obese persons is prompted by inflated brain reward center activity to stimuli linked with high-calorie foods [2], but there are hardly any data-analytic calorie-based cognitive studies using non-invasive Near-Infrared Spectroscopy (NIRS) data that predict obesity using predictive data mining. In this paper, details of a novel research methodology are presented for a 24-month longitudinal NIRS study in natural subject environments. The proposed methodology is based on brain reward center activation mapping, simulated results of Naïve Bayes modeling using these activation maps demonstrate how cerebral functional activity data can be used to predict obesity in the non-obese.

References

[1]
World Health Organization (2000) Obesity: preventing and managing the global epidemic. Report of a WHO consultation. WHO Tech Rep Ser 894: 1--253.
[2]
Shefer, G., Marcus, Y., & Stern, N. (2013). Is obesity a brain disease?. Neuroscience & Biobehavioral Reviews, 37(10), 2489--2503.
[3]
Ashrafian, H., Harling, L., Darzi, A., & Athanasiou, T. (2013). Neurodegenerative disease and obesity: what is the role of weight loss and bariatric interventions?. Metabolic brain disease, 28(3), 341--353.
[4]
Caraci F, Copani A, Nicoletti F, Drago F. Depression and Alzheimer's disease: Neurobiological links and common pharmacological targets. Eur J Pharmacol. 2010 Jan 10;626(1):64--71
[5]
Bruce-Keller, A. J., Keller, J. N., & Morrison, C. D. (2009). Obesity and vulnerability of the CNS. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 1792(5), 395--400.
[6]
Taki, Y., Kinomura, S., Sato, K., Inoue, K., Goto, R., Okada, K., & Fukuda, H. (2008). Relationship between body mass index and gray matter volume in 1,428 healthy individuals. Obesity, 16(1), 119--124.
[7]
Ward, M. A., Carlsson, C. M., Trivedi, M. A., Sager, M. A., & Johnson, S. C. (2005). The effect of body mass index on global brain volume in middle-aged adults: a cross sectional study. BMC neurology, 5(1), 23.
[8]
Sinus MRI scan, National Institute of Health, USA, http://www.nlm.nih.gov/medlineplus/ency/article/007356.ht m
[9]
Belgardt BF, Bruning JC. CNS leptin and insulin action in the control of energy homeostasis. Ann N Y Acad Sci.2010; pp. 1212:97--113.
[10]
Myers MG, et al. Mechanisms of leptin action and leptin resistance. Annu. Rev Physiol. 2008; 70: pp. 537--556.
[11]
Myers MG, Jr, et al. Obesity and leptin resistance: distinguishing cause from effect. Trends Endocrinol Metab. 2010; 21: pp. 643--651.
[12]
Mei Z, Grummer-Strawn LM, Pietrobelli A, Goulding A, Goran MI and Dietz WH. Validity of body mass index compared with other body-composition screening indexes for the assessment of body fatness in children and adolescents. Am J Clin Nutr 2002; 75(6) 978--85
[13]
Obesity crisis 'will force hospitals to use super-size MRI, Nov. 1, 2012, www.telegraph.co.uk
[14]
X. Cui, S. Bray and A. L. Reiss, "Speeded near infrared spectroscopy (NIRS) response detection.," PLoS One, vol. 5, no. 11, 2010.
[15]
X. Cui, S. Bray, D. M. Bryant, G. H. Glover and A. L. Reiss, "A quantitative comparison of NIRS and fMRI across multiple cognitive tasks.," Neuroimage, vol. 54, no. 4, pp. 2808--2821, 2011.
[16]
T. J. Huppert, R. D. Hoge, S. G. Diamond, M. A. Franceschini and D. A. Boas, "A temporal comparison of BOLD, ASL, and NIRS hemodynamic responses to motor stimuli in adult humans.," Neuroimage, vol. 29, no. 2, pp. 368--382, 2006.
[17]
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3073717/
[18]
https://www.ncbi.nlm.nih.gov/ /21047559
[19]
Glisky E. L. (2007). Changes in cognitive function in human aging, in Brain Aging: Models, Methods, and Mechanisms, ed Riddle D. R., editor. (Boca Raton, FL: CRC press;), 4--20.
[20]
Elias, M. F., Elias, P. K., Sullivan, L. M., Wolf, P. A., & D'Agostino, R. B. (2005). Obesity, diabetes and cognitive deficit: the Framingham Heart Study. Neurobiology of aging, 26(1), 11--16.
[21]
Jeong, S. K., Nam, H. S., Son, M. H., Son, E. J., & Cho, K. H. (2005). Interactive effect of obesity indexes on cognition. Dementia and geriatric cognitive disorders, 19(2-3), 91--96.
[22]
Hassing, L. B., Dahl, A. K., Pedersen, N. L., & Johansson, B. (2010). Overweight in midlife is related to lower cognitive function 30 years later: a prospective study with longitudinal assessments. Dementia and geriatric cognitive disorders, 29(6), 543--552.
[23]
Cournot, M. C. M. J., Marquie, J. C., Ansiau, D., Martinaud, C., Fonds, H., Ferrieres, J., & Ruidavets, J. B. (2006). Relation between body mass index and cognitive function in healthy middle-aged men and women. Neurology, 67(7), 1208--1214.
[24]
Mond, J. M., Rodgers, B., Hay, P. J., Darby, A., Owen, C., Baune, B. T., & Kennedy, R. L. (2007). Obesity and impairment in psychosocial functioning in women: the mediating role of eating disorder features. Obesity, 15(11), 2769--2779.
[25]
Lokken, K. L., Boeka, A. G., Austin, H. M., Gunstad, J., & Harmon, C. M. (2009). Evidence of executive dysfunction in extremely obese adolescents: a pilot study. Surgery for Obesity and Related Diseases, 5(5), 547--552.
[26]
Sabia, S., Nabi, H., Kivimaki, M., Shipley, M. J., Marmot, M. G., & Singh-Manoux, A. (2009). Health behaviors from early to late midlife as predictors of cognitive function the Whitehall II Study. American journal of epidemiology, kwp161.
[27]
Berridge, K. C., & Kringelbach, M. L. (2008). Affective neuroscience of pleasure: reward in humans and animals. Psychopharmacology, 199(3), 457--480.
[28]
Berridge, K. C., & Robinson, T. E. (1998). What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience?. Brain research reviews, 28(3), 309--369.
[29]
Salamone, J. D., & Correa, M. (2012). The mysterious motivational functions of mesolimbic dopamine. Neuron, 76(3), 470--485.
[30]
Kringelbach, Morten L., and Kent C. Berridge. "The functional neuroanatomy of pleasure and happiness." Discovery medicine 9.49 (2010): 579.
[31]
Ellison Z, Foong J, Howard R, Bullmore E, Williams S, Treasure J. Functional anatomy of calorie fear in anorexia nervosa. Lancet. 1998;352(9135):1192.
[32]
Naruo T, Nakabeppu Y, Sagiyama K, et al. Characteristic regional cerebral blood flow patterns in anorexia nervosa patients with binge/purge behavior. Am J Psychiatry. 2000;157(9):1520--1522.
[33]
Gordon CM, Dougherty DD, Fischman AJ, et al. Neural substrates of anorexia nervosa: a behavioral challenge study with positrón emission tomography. J Pediatr. 2001;139(1):51--57.
[34]
Uher R, Murphy T, Brammer M, et al. Medial prefrontal cortex activity associated with symptom provocation in eating disorders. Am J Psychiatry. 2004;161(7):1238--1246.
[35]
Cui, Xu et al. "A Quantitative Comparison of NIRS and fMRI across Multiple Cognitive Tasks." NeuroImage 54.4 (2011): 2808--2821. PMC. Web. 14 Mar. 2017.
[36]
Lennerz, B. S., Alsop, D. C., Holsen, L. M., Stern, E., Rojas, R., Ebbeling, C. B., & Ludwig, D. S. (2013). Effects of dietary glycemic index on brain regions related to reward and craving in men. The American journal of clinical nutrition, 98(3), 641--647.
[37]
Schur, E. A., N. M. Kleinhans, Jack Goldberg, Dedra Buchwald, M. W. Schwartz, and Ken Maravilla. "Activation in brain energy regulation and reward centers by food cues varies with choice of visual stimulus." International Journal of Obesity 33, no. 6 (2009): 653--661.
[38]
Frank, S., Laharnar, N., Kullmann, S., Veit, R., Canova, C., Hegner, Y. L., & Preissl, H. (2010). Processing of food pictures: influence of hunger, gender and calorie content. Brain research, 1350, 159166.
[39]
Rothemund, Y., Preuschhof, C., Bohner, G., Bauknecht, H. C., Klingebiel, R., Flor, H., & Klapp, B. F. (2007). Differential activation of the dorsal striatum by high-calorie visual food stimuli in obese individuals. Neuroimage, 37(2), 410--421.
[40]
Page, K. A., Seo, D., Belfort-DeAguiar, R., Lacadie, C., Dzuira, J., Naik, S., & Sinha, R. (2011). Circulating glucose levels modulate neural control of desire for high-calorie foods in humans. The Journal of clinical investigation, 121(10), 4161--4169.
[41]
Asano H., The estimation of taste preference based on prefrontal cortex activity, Springer Communications in Computer and Information Science 528, HCI International 2015, Part 1, 2015.
[42]
Suda, M., Uehara, T., Fukuda, M., Sato, T., Kameyama, M., & Mikuni, M. (2010). Dieting tendency and eating behavior problems in eating disorder correlate with right frontotemporal and left orbitofrontal cortex: a near-infrared spectroscopy study. Journal of psychiatric research, 44(8), 547--555.
[43]
Kober, S. E., & Wood, G. (2014). Changes in hemodynamic signals accompanying motor imagery and motor execution of swallowing: A near-infrared spectroscopy study. NeuroImage, 93, 1--10.
[44]
Okamoto, M., & Dan, I. (2007). Functional near-infrared spectroscopy for human brain mapping of taste-related cognitive functions. Journal of bioscience and bioengineering, 103(3), 207--215.
[45]
Small, D. M., Veldhuizen, M. G., Felsted, J., Mak, Y. E., & McGlone, F. (2008). Separable substrates for anticipatory and consummatory food chemosensation. Neuron, 57(5), 786--797.
[46]
N.A. Lazar, The Statistical Analysis of Functional MRI Data. 2, c Springer Science+Business Media, LLC 2008
[47]
Chaddad, A. (2014). Brain Function Diagnosis Enhanced Using Denoised fNIRS Raw Signals. Journal of Biomedical Science and Engineering, 2014.
[48]
Hashimoto T, Minagawa-Kawai Y, Kojima S. Motion illusion activates the visual motion area of the brain: A near-infrared spectroscopy (NIRS) study. Brain Research. 2006;1077:116--122.
[49]
Shibuya K, Kuboyama N. Human motor cortex oxygenation during exhaustive pinching task. Brain Research. 2007;1156:120--124.
[50]
Watanabe H, Homae F, Nakano T, Taga G. Functional activation in diverse regions of the developing brain of human infants. Neuroimage. 2008;43:346--357.
[51]
Huppert TJ, Diamond SG, Franceschini MA, Boas DA. HomER: a review of time-series analysis methods for near-infrared spectroscopy of the brain. Applied Optics. 2009;48:D280--D298.
[52]
Berson, A., K. Thearling, and J. Stephen, Building Data Mining Applications for CRM, USA, McGraw-Hill (1999).
[53]
Langley, P.; Iba, W.; Thompson, K.: An analysis of Bayesian classifiers. In: Proceedings of the 10th National Conference on Artificial Intelligence, pp. 223--228. MIT Press (1992)
[54]
Papoulis, A.: Probability, Random Variables, and Stochastic Processes. Front Cover. pp. 576 McGraw-Hill, New York (1984)
[55]
Chapter 1, Longitudinal Data Analysis, http://faculty.washington.edu/heagerty/Courses/VAlongitudi nal/private/LDAchapter.pdf

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Other conferences
ICCDA '17: Proceedings of the International Conference on Compute and Data Analysis
May 2017
307 pages
ISBN:9781450352413
DOI:10.1145/3093241
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

In-Cooperation

  • University of Florida: University of Florida

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 19 May 2017

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. NIRS
  2. Naïve Bayes
  3. Prediction
  4. data mining
  5. obesity
  6. paired t-test

Qualifiers

  • Research-article
  • Research
  • Refereed limited

Conference

ICCDA '17

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 111
    Total Downloads
  • Downloads (Last 12 months)3
  • Downloads (Last 6 weeks)0
Reflects downloads up to 05 Mar 2025

Other Metrics

Citations

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media