skip to main content
10.1145/3093241.3093286acmotherconferencesArticle/Chapter ViewAbstractPublication PagesiccdaConference Proceedingsconference-collections
research-article

Predicting Obesity Using Longitudinal Near Infra-Red Spectroscopy (NIRS) Data

Published:19 May 2017Publication History

ABSTRACT

Globally there has been a dramatic increase in obesity [1]. Thus understanding, predicting and managing obesity has the potential to save lives and billions. Behavioral studies suggest that binging by obese persons is prompted by inflated brain reward center activity to stimuli linked with high-calorie foods [2], but there are hardly any data-analytic calorie-based cognitive studies using non-invasive Near-Infrared Spectroscopy (NIRS) data that predict obesity using predictive data mining. In this paper, details of a novel research methodology are presented for a 24-month longitudinal NIRS study in natural subject environments. The proposed methodology is based on brain reward center activation mapping, simulated results of Naïve Bayes modeling using these activation maps demonstrate how cerebral functional activity data can be used to predict obesity in the non-obese.

References

  1. World Health Organization (2000) Obesity: preventing and managing the global epidemic. Report of a WHO consultation. WHO Tech Rep Ser 894: 1--253.Google ScholarGoogle Scholar
  2. Shefer, G., Marcus, Y., & Stern, N. (2013). Is obesity a brain disease?. Neuroscience & Biobehavioral Reviews, 37(10), 2489--2503. Google ScholarGoogle ScholarCross RefCross Ref
  3. Ashrafian, H., Harling, L., Darzi, A., & Athanasiou, T. (2013). Neurodegenerative disease and obesity: what is the role of weight loss and bariatric interventions?. Metabolic brain disease, 28(3), 341--353. Google ScholarGoogle ScholarCross RefCross Ref
  4. Caraci F, Copani A, Nicoletti F, Drago F. Depression and Alzheimer's disease: Neurobiological links and common pharmacological targets. Eur J Pharmacol. 2010 Jan 10;626(1):64--71 Google ScholarGoogle ScholarCross RefCross Ref
  5. Bruce-Keller, A. J., Keller, J. N., & Morrison, C. D. (2009). Obesity and vulnerability of the CNS. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 1792(5), 395--400. Google ScholarGoogle ScholarCross RefCross Ref
  6. Taki, Y., Kinomura, S., Sato, K., Inoue, K., Goto, R., Okada, K., & Fukuda, H. (2008). Relationship between body mass index and gray matter volume in 1,428 healthy individuals. Obesity, 16(1), 119--124. Google ScholarGoogle ScholarCross RefCross Ref
  7. Ward, M. A., Carlsson, C. M., Trivedi, M. A., Sager, M. A., & Johnson, S. C. (2005). The effect of body mass index on global brain volume in middle-aged adults: a cross sectional study. BMC neurology, 5(1), 23. Google ScholarGoogle ScholarCross RefCross Ref
  8. Sinus MRI scan, National Institute of Health, USA, http://www.nlm.nih.gov/medlineplus/ency/article/007356.ht mGoogle ScholarGoogle Scholar
  9. Belgardt BF, Bruning JC. CNS leptin and insulin action in the control of energy homeostasis. Ann N Y Acad Sci.2010; pp. 1212:97--113.Google ScholarGoogle Scholar
  10. Myers MG, et al. Mechanisms of leptin action and leptin resistance. Annu. Rev Physiol. 2008; 70: pp. 537--556. Google ScholarGoogle ScholarCross RefCross Ref
  11. Myers MG, Jr, et al. Obesity and leptin resistance: distinguishing cause from effect. Trends Endocrinol Metab. 2010; 21: pp. 643--651. Google ScholarGoogle ScholarCross RefCross Ref
  12. Mei Z, Grummer-Strawn LM, Pietrobelli A, Goulding A, Goran MI and Dietz WH. Validity of body mass index compared with other body-composition screening indexes for the assessment of body fatness in children and adolescents. Am J Clin Nutr 2002; 75(6) 978--85Google ScholarGoogle Scholar
  13. Obesity crisis 'will force hospitals to use super-size MRI, Nov. 1, 2012, www.telegraph.co.ukGoogle ScholarGoogle Scholar
  14. X. Cui, S. Bray and A. L. Reiss, "Speeded near infrared spectroscopy (NIRS) response detection.," PLoS One, vol. 5, no. 11, 2010. Google ScholarGoogle ScholarCross RefCross Ref
  15. X. Cui, S. Bray, D. M. Bryant, G. H. Glover and A. L. Reiss, "A quantitative comparison of NIRS and fMRI across multiple cognitive tasks.," Neuroimage, vol. 54, no. 4, pp. 2808--2821, 2011. Google ScholarGoogle ScholarCross RefCross Ref
  16. T. J. Huppert, R. D. Hoge, S. G. Diamond, M. A. Franceschini and D. A. Boas, "A temporal comparison of BOLD, ASL, and NIRS hemodynamic responses to motor stimuli in adult humans.," Neuroimage, vol. 29, no. 2, pp. 368--382, 2006. Google ScholarGoogle ScholarCross RefCross Ref
  17. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3073717/Google ScholarGoogle Scholar
  18. https://www.ncbi.nlm.nih.gov/pubmed/21047559Google ScholarGoogle Scholar
  19. Glisky E. L. (2007). Changes in cognitive function in human aging, in Brain Aging: Models, Methods, and Mechanisms, ed Riddle D. R., editor. (Boca Raton, FL: CRC press;), 4--20. Google ScholarGoogle ScholarCross RefCross Ref
  20. Elias, M. F., Elias, P. K., Sullivan, L. M., Wolf, P. A., & D'Agostino, R. B. (2005). Obesity, diabetes and cognitive deficit: the Framingham Heart Study. Neurobiology of aging, 26(1), 11--16. Google ScholarGoogle ScholarCross RefCross Ref
  21. Jeong, S. K., Nam, H. S., Son, M. H., Son, E. J., & Cho, K. H. (2005). Interactive effect of obesity indexes on cognition. Dementia and geriatric cognitive disorders, 19(2-3), 91--96. Google ScholarGoogle ScholarCross RefCross Ref
  22. Hassing, L. B., Dahl, A. K., Pedersen, N. L., & Johansson, B. (2010). Overweight in midlife is related to lower cognitive function 30 years later: a prospective study with longitudinal assessments. Dementia and geriatric cognitive disorders, 29(6), 543--552. Google ScholarGoogle ScholarCross RefCross Ref
  23. Cournot, M. C. M. J., Marquie, J. C., Ansiau, D., Martinaud, C., Fonds, H., Ferrieres, J., & Ruidavets, J. B. (2006). Relation between body mass index and cognitive function in healthy middle-aged men and women. Neurology, 67(7), 1208--1214. Google ScholarGoogle ScholarCross RefCross Ref
  24. Mond, J. M., Rodgers, B., Hay, P. J., Darby, A., Owen, C., Baune, B. T., & Kennedy, R. L. (2007). Obesity and impairment in psychosocial functioning in women: the mediating role of eating disorder features. Obesity, 15(11), 2769--2779. Google ScholarGoogle ScholarCross RefCross Ref
  25. Lokken, K. L., Boeka, A. G., Austin, H. M., Gunstad, J., & Harmon, C. M. (2009). Evidence of executive dysfunction in extremely obese adolescents: a pilot study. Surgery for Obesity and Related Diseases, 5(5), 547--552. Google ScholarGoogle ScholarCross RefCross Ref
  26. Sabia, S., Nabi, H., Kivimaki, M., Shipley, M. J., Marmot, M. G., & Singh-Manoux, A. (2009). Health behaviors from early to late midlife as predictors of cognitive function the Whitehall II Study. American journal of epidemiology, kwp161. Google ScholarGoogle ScholarCross RefCross Ref
  27. Berridge, K. C., & Kringelbach, M. L. (2008). Affective neuroscience of pleasure: reward in humans and animals. Psychopharmacology, 199(3), 457--480. Google ScholarGoogle ScholarCross RefCross Ref
  28. Berridge, K. C., & Robinson, T. E. (1998). What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience?. Brain research reviews, 28(3), 309--369. Google ScholarGoogle ScholarCross RefCross Ref
  29. Salamone, J. D., & Correa, M. (2012). The mysterious motivational functions of mesolimbic dopamine. Neuron, 76(3), 470--485. Google ScholarGoogle ScholarCross RefCross Ref
  30. Kringelbach, Morten L., and Kent C. Berridge. "The functional neuroanatomy of pleasure and happiness." Discovery medicine 9.49 (2010): 579.Google ScholarGoogle Scholar
  31. Ellison Z, Foong J, Howard R, Bullmore E, Williams S, Treasure J. Functional anatomy of calorie fear in anorexia nervosa. Lancet. 1998;352(9135):1192. Google ScholarGoogle ScholarCross RefCross Ref
  32. Naruo T, Nakabeppu Y, Sagiyama K, et al. Characteristic regional cerebral blood flow patterns in anorexia nervosa patients with binge/purge behavior. Am J Psychiatry. 2000;157(9):1520--1522. Google ScholarGoogle ScholarCross RefCross Ref
  33. Gordon CM, Dougherty DD, Fischman AJ, et al. Neural substrates of anorexia nervosa: a behavioral challenge study with positrón emission tomography. J Pediatr. 2001;139(1):51--57. Google ScholarGoogle ScholarCross RefCross Ref
  34. Uher R, Murphy T, Brammer M, et al. Medial prefrontal cortex activity associated with symptom provocation in eating disorders. Am J Psychiatry. 2004;161(7):1238--1246. Google ScholarGoogle ScholarCross RefCross Ref
  35. Cui, Xu et al. "A Quantitative Comparison of NIRS and fMRI across Multiple Cognitive Tasks." NeuroImage 54.4 (2011): 2808--2821. PMC. Web. 14 Mar. 2017.Google ScholarGoogle Scholar
  36. Lennerz, B. S., Alsop, D. C., Holsen, L. M., Stern, E., Rojas, R., Ebbeling, C. B., & Ludwig, D. S. (2013). Effects of dietary glycemic index on brain regions related to reward and craving in men. The American journal of clinical nutrition, 98(3), 641--647. Google ScholarGoogle ScholarCross RefCross Ref
  37. Schur, E. A., N. M. Kleinhans, Jack Goldberg, Dedra Buchwald, M. W. Schwartz, and Ken Maravilla. "Activation in brain energy regulation and reward centers by food cues varies with choice of visual stimulus." International Journal of Obesity 33, no. 6 (2009): 653--661. Google ScholarGoogle ScholarCross RefCross Ref
  38. Frank, S., Laharnar, N., Kullmann, S., Veit, R., Canova, C., Hegner, Y. L., & Preissl, H. (2010). Processing of food pictures: influence of hunger, gender and calorie content. Brain research, 1350, 159166. Google ScholarGoogle ScholarCross RefCross Ref
  39. Rothemund, Y., Preuschhof, C., Bohner, G., Bauknecht, H. C., Klingebiel, R., Flor, H., & Klapp, B. F. (2007). Differential activation of the dorsal striatum by high-calorie visual food stimuli in obese individuals. Neuroimage, 37(2), 410--421. Google ScholarGoogle ScholarCross RefCross Ref
  40. Page, K. A., Seo, D., Belfort-DeAguiar, R., Lacadie, C., Dzuira, J., Naik, S., & Sinha, R. (2011). Circulating glucose levels modulate neural control of desire for high-calorie foods in humans. The Journal of clinical investigation, 121(10), 4161--4169. Google ScholarGoogle ScholarCross RefCross Ref
  41. Asano H., The estimation of taste preference based on prefrontal cortex activity, Springer Communications in Computer and Information Science 528, HCI International 2015, Part 1, 2015.Google ScholarGoogle Scholar
  42. Suda, M., Uehara, T., Fukuda, M., Sato, T., Kameyama, M., & Mikuni, M. (2010). Dieting tendency and eating behavior problems in eating disorder correlate with right frontotemporal and left orbitofrontal cortex: a near-infrared spectroscopy study. Journal of psychiatric research, 44(8), 547--555. Google ScholarGoogle ScholarCross RefCross Ref
  43. Kober, S. E., & Wood, G. (2014). Changes in hemodynamic signals accompanying motor imagery and motor execution of swallowing: A near-infrared spectroscopy study. NeuroImage, 93, 1--10. Google ScholarGoogle ScholarCross RefCross Ref
  44. Okamoto, M., & Dan, I. (2007). Functional near-infrared spectroscopy for human brain mapping of taste-related cognitive functions. Journal of bioscience and bioengineering, 103(3), 207--215. Google ScholarGoogle ScholarCross RefCross Ref
  45. Small, D. M., Veldhuizen, M. G., Felsted, J., Mak, Y. E., & McGlone, F. (2008). Separable substrates for anticipatory and consummatory food chemosensation. Neuron, 57(5), 786--797. Google ScholarGoogle ScholarCross RefCross Ref
  46. N.A. Lazar, The Statistical Analysis of Functional MRI Data,DOI: 10.1007/978-0-387-78191-4 2, c Springer Science+Business Media, LLC 2008 Google ScholarGoogle ScholarCross RefCross Ref
  47. Chaddad, A. (2014). Brain Function Diagnosis Enhanced Using Denoised fNIRS Raw Signals. Journal of Biomedical Science and Engineering, 2014. Google ScholarGoogle ScholarCross RefCross Ref
  48. Hashimoto T, Minagawa-Kawai Y, Kojima S. Motion illusion activates the visual motion area of the brain: A near-infrared spectroscopy (NIRS) study. Brain Research. 2006;1077:116--122. doi: 10.1016/j.brainres.2005.11.050. Google ScholarGoogle ScholarCross RefCross Ref
  49. Shibuya K, Kuboyama N. Human motor cortex oxygenation during exhaustive pinching task. Brain Research. 2007;1156:120--124. doi: 10.1016/j.brainres.2007.05.009. Google ScholarGoogle ScholarCross RefCross Ref
  50. Watanabe H, Homae F, Nakano T, Taga G. Functional activation in diverse regions of the developing brain of human infants. Neuroimage. 2008;43:346--357. doi: 10.1016/j.neuroimage.2008.07.014. Google ScholarGoogle ScholarCross RefCross Ref
  51. Huppert TJ, Diamond SG, Franceschini MA, Boas DA. HomER: a review of time-series analysis methods for near-infrared spectroscopy of the brain. Applied Optics. 2009;48:D280--D298. doi: 10.1364/AO.48.00D280. Google ScholarGoogle ScholarCross RefCross Ref
  52. Berson, A., K. Thearling, and J. Stephen, Building Data Mining Applications for CRM, USA, McGraw-Hill (1999).Google ScholarGoogle Scholar
  53. Langley, P.; Iba, W.; Thompson, K.: An analysis of Bayesian classifiers. In: Proceedings of the 10th National Conference on Artificial Intelligence, pp. 223--228. MIT Press (1992)Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. Papoulis, A.: Probability, Random Variables, and Stochastic Processes. Front Cover. pp. 576 McGraw-Hill, New York (1984)Google ScholarGoogle Scholar
  55. Chapter 1, Longitudinal Data Analysis, http://faculty.washington.edu/heagerty/Courses/VAlongitudi nal/private/LDAchapter.pdfGoogle ScholarGoogle Scholar

Index Terms

  1. Predicting Obesity Using Longitudinal Near Infra-Red Spectroscopy (NIRS) Data

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in
        • Published in

          cover image ACM Other conferences
          ICCDA '17: Proceedings of the International Conference on Compute and Data Analysis
          May 2017
          307 pages
          ISBN:9781450352413
          DOI:10.1145/3093241

          Copyright © 2017 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 19 May 2017

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article
          • Research
          • Refereed limited
        • Article Metrics

          • Downloads (Last 12 months)4
          • Downloads (Last 6 weeks)0

          Other Metrics

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader