skip to main content
10.1145/3102254.3102278acmotherconferencesArticle/Chapter ViewAbstractPublication PageswimsConference Proceedingsconference-collections
research-article

ConteSaG: context-based keyword search over multiple heterogeneous graph-modeled data

Published:19 June 2017Publication History

ABSTRACT

Following the NoSQL (Not Only SQL) movement, more research work and applications are looking towards graph databases for their dynamic schema and natural representation of complex data1. In order to access/ search graph data in a single source, a number of search methods have been proposed in the literature. These methods range from graph query languages, pattern queries, template/form based search, to keyword search. One key challenge of these methods is the expressiveness and ease of use trade-off for query formulation. Formulating queries becomes more challenging when querying multiple heterogeneous data sources and when users are unaware of the structure of the underlying data. This paper reviews various methods proposed in the literature to query graph modeled data in two different settings; namely, single source and multiple heterogeneous data sources. Furthermore, the paper proposes ConteSaG, a technique for transparently querying multiple heterogeneous data sources. ConteSaG employs graph database to represent data residing in local sources with no need to create complex global schema or even to upfront integrate all data in a central source. Moreover, ConteSaG provides a context-based keyword search over the graph representations. Context-based keyword search allows users to search multiple data sources by determining the context of search terms without the need to have complete knowledge about the structure of data in the local sources or writing queries in a specific query language.

References

  1. Mike Buerli, The Current State of Graph Databases. (2012)Google ScholarGoogle Scholar
  2. Neo4j, http://neo4j.org (2016).Google ScholarGoogle Scholar
  3. H. He, Querying and mining graph databases. Ph.D. Thesis, UCSB (2007)Google ScholarGoogle Scholar
  4. E. Prud'hommeaux and A. Seaborne. SPARQL query language for RDF. W3C, URL: http://www.w3.org/TR/rdf-sparql-query/ (Document Status Update, 26 March 2013) (last visit: 2017).Google ScholarGoogle Scholar
  5. R. H. Guting. GraphDB: Modeling and querying graphs in databases. In VLDB Conference, pages 297--308 (1994)Google ScholarGoogle Scholar
  6. Mariano P. Consens, Alberto O. Mendelzon, GraphLog: a visual formalism for real life recursion, Proceedings of the ninth ACM SIGACT-SIGMOD-SIGART symposium on Principles of database systems, pp.404--416 (1990)Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. X. Yan, P.S. Yu, and J. Han. Graph indexing; a frequent structure-based approach. In SIGMOD, 2004.Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. D. Shasha, J.T.L. Wang and R. Giugno. Algorithmics and applications of tree and graph searching In PODS, (2002)Google ScholarGoogle Scholar
  9. Federica M., Riccardo M., Giorgio V., and Wilma P. Flexible Query Answering on graph-modeled Data. ACM, EDBT (2009)Google ScholarGoogle Scholar
  10. R. De Virgilio A. Maccioni, and R. Torlone. Approximate querying of rdf graphs via path alignment. Distributed and Parallel Database, pages 1--27, (2014)Google ScholarGoogle Scholar
  11. YuanyuanTian. Querying Graph Databases. Thesis (2008)Google ScholarGoogle Scholar
  12. B.P. Kelley, B. Yuan, f. Lewitter, R. Sharan, B. R. Stockwel, and T. Ideker. Pathblast: a tool for aligning of protein interaction networks. Nucleic Acids Res., pages 83--88,(2004). Google ScholarGoogle ScholarCross RefCross Ref
  13. M. Koyuturk, A. greme, and W. Szpenkowski. Pairwise local alignment of protein interaction networks guided by models of evaluation. In International conference on research in computational moleculer biology, pages 48--56, (2005)Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. R. Sharan. Conserved Patterns of Protein Interaction in Multiple species. PNAS, 102: 1974--1979, (2005) Google ScholarGoogle ScholarCross RefCross Ref
  15. M. Jayapandian and H. V. Jagadish. Automated Creation of a Forms-based Database Query Interface. In Proc. VLDB, Pages 695--709, (2008) Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Y. Papakonstantinou, M. Petropoulos, and V. Vassalos. QURSED: Quering and Reporting Semi-structured Data. In Proc. SIGMOD, Pages 192--203, (2002) Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. A. Zouzies, M. Vlachos, and V. Hristidis. Templated Search over Relational Databases. ACM, November (2014)Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Yunyao Li, Huahai Yang, and H. V. Jagadish. NaLIX: A generic natural language search environment for XML data. ACM Trans. Database Syst., 32(4), (2007) Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. A.M. Popesc, O. Etzioni, and H. Kautz. Towards a theory of natural language interfaces to databases. In Proc. IUI, Pages 149--157, (2003)Google ScholarGoogle Scholar
  20. F. Li and H. V. Jagadish. NaLIR: An interactive natural language interface for querying relational databases. In SIGMOD, (2014)Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. M. Kargar, A. An, N. Cercone, P.Godfrey, JJ.Szlichta, and X. Yu. MeanKS: Meaningful keyword search in relational databases with complex schema. In SIGMOD, (2014)Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. R. De Virgilio, A. Maccioni, and R. Torlone. Graph driven exploration of relational databases for efficient keyword search. In GraphQ, pages 208--2015, (2014)Google ScholarGoogle Scholar
  23. Z. Zeng, Z. Bao, M. Li Lee, and T. Wang Ling. Towards an interactive keyword search over relational databases. ACM 978-1-4503-3473-0/15/05, pages 259--262, (2015) Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. G. Bhalotia, A. Hulgeri, C. Nakhe, S. Chakrabarti, and S. Sudarshan: Keyword searching and browsing in databases using BANKS. In : Proc. 18th Int. Conf. on Data Engineering, pp. 431--440 (2002) Google ScholarGoogle ScholarCross RefCross Ref
  25. V. Kacholia, S. Pandit, S. Chakrabarti, S. Sudarshan, R. Desai, and H. Karambelkar: Bidirectional expansion for keyword search on graph databases. In: VLDB, pp. 505--516 ( 2005)Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. H. He, H. Wang, J. Yang, and P. Yu: BLINKS: Ranked keyword searches on graphs. In: Proceedings of the 2007 ACM SIGMOD international conference on Management of data, pp. 305--316 (2007) Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Guoliang Li, JianhuaFeng, Feng Lin, Lizhu Zhou: Progressive Ranking for Efficient Keyword Search over Relational Databases. Proceedings of the 25th British national conference on Databases: Sharing Data, Information and Knowledge, pp. 193 -- 197(2008) Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. L. Qin, J. X. Yu, L. Chang, and Y. Tao.: Querying communities in relational databases. In: Proc. 25th Int. Conf. on Data Engineering, PP. 724--735 (2009). Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Guoliang Li, Beng Chin Ooi, JianhuaFeng, JianyongWang, and Lizhu Zhou.: EASE: an effective3-in-1 keyword search method for unstructured, semi-structured and structured data. In: Proc.2008 ACM SIGMOD Int. Conf. On Management of Data, PP. 903--914(2008).Google ScholarGoogle Scholar
  30. Dalvi, B.B., Kshirsagar, M. Sudarshan, S.: Keyword search on external memory data graphs. PVLDB 1(1), pages 1189--1204 (2008)Google ScholarGoogle Scholar
  31. D. Wang, L. Zou, W. Pan and D. Zhao. Keyword Graph: Answering Keyword Search over Large Graphs. In Springer, pages 635--649 (2012)Google ScholarGoogle ScholarCross RefCross Ref
  32. Kasneci, G., Ramanath, M., Sozio, M., Suchanek, F.m., Weikum, G.: Star: Steiner tree approximation in relationship graphs. In ICDE, pages 868--879 (2009)Google ScholarGoogle Scholar
  33. Jaehui Park and Sang goo Lee. Keyword search in relational databases. Knowl. Inf. Syst., 26(2): pages 175--193, (2011) Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Li, Guoliang; Feng, Jianhua; Zhou, Xiaofang; Wang, Jianyong: Providing built-in keyword search capabilities in RDBMS. In: VLDB, pp. 1--19 (2011)Google ScholarGoogle Scholar
  35. S. Agrawal, S. Chaudhuri, and G. Das: DBXplorer: A System for keyword Search over Relational Databases. In: ICDE, pp. 5--16 (2002) Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. V. Hristidis and Y. Papakonstantinou: DISCOVER: Keyword search in relational databases. In: Proc. 28th Int. Conf. On Very Large Data Bases, pp. 670--681 (2002) Google ScholarGoogle ScholarCross RefCross Ref
  37. V. Hristidis, L. Gravano, Y. Papakonstantinou: Efficient IR-Style Keyword Search over Relational Databases. In: VLDB, pp 850--861 (2003) Google ScholarGoogle ScholarCross RefCross Ref
  38. G. Li J. Wang, L. Zhou. Efficient keyword search for valuable LCAs over xml documents. In proceedings of the 16th ACM Conference on information and knowledge management, pp. 31--40, (2007)Google ScholarGoogle Scholar
  39. Yu Xu and YannisPapakonstantinou. Efficient Keyword Search for Smallest LCAs in XML Databases. In FatmaÖzcan, editor, Proceed- ings of the ACM SIGMOD International Conference on Management of Data, Baltimore, Maryland, USA, June 14--16, 2005, pages 527--538,( 2005)Google ScholarGoogle Scholar
  40. Yu Xu and YannisPapakonstantinou. Efficient LCA based keyword search in XML data. In Alfons Kemper, Patrick Valduriez, NoureddineMouaddib, Jens Teubner, MokraneBouzeghoub, Volker Markl, Laurent Amsaleg, and IoanaManolescu, editors, EDBT 2008, 11th International Conference on Extending Database Technology, Nantes, France, March 25--29, 2008, Proceedings, volume 261 of ACM International Conference Proceeding Series, pages 535--546. ACM, 2008.Google ScholarGoogle Scholar
  41. Luiz Gomes Jr. and Andr'eSantanch' The Web Within: Leveraging Web Standards and Graph Analysis to Enable Application-Level Integration of Institutional Data. Springer-Verlag Berlin Heidelberg 2015, pp. 26--54(2015).Google ScholarGoogle Scholar
  42. MayssamSayyadian, HieuLeKhac, AnHai Doan, and Luis Gravano. Efficient Keyword Search Across Heterogeneous Relational Databases. In Proceedings of the 23rd International Conference on Data Engineering,ICDE 2007, April 15--20, 2007, The Marmara Hotel, Istanbul, Turkey, pages 346--355, (2007)Google ScholarGoogle Scholar
  43. Geist, Ingolf: Keyword Search across Distributed Heterogeneous Structured Data Sources Dissertation, Otto-von-Guericke-Universität Magdeburg, (2012)Google ScholarGoogle Scholar
  44. ChavanAparna, SuvarnaBangar: Review on KeywordSeaech over Relational Databases. International Journal of Emerging Technology and Advanced Engineering, Volume 4, Issue 11 (2014).Google ScholarGoogle Scholar

Index Terms

  1. ConteSaG: context-based keyword search over multiple heterogeneous graph-modeled data

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Other conferences
      WIMS '17: Proceedings of the 7th International Conference on Web Intelligence, Mining and Semantics
      June 2017
      268 pages
      ISBN:9781450352253
      DOI:10.1145/3102254

      Copyright © 2017 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 19 June 2017

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      Overall Acceptance Rate140of278submissions,50%
    • Article Metrics

      • Downloads (Last 12 months)3
      • Downloads (Last 6 weeks)0

      Other Metrics

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader