skip to main content
10.1145/3109761.3158407acmotherconferencesArticle/Chapter ViewAbstractPublication PagesimlConference Proceedingsconference-collections
research-article

Dimensionality reduction approaches and evolving challenges in high dimensional data

Authors Info & Claims
Published:17 October 2017Publication History

ABSTRACT

Feature selection plays an important role in data mining and machine learning. It helps to reduce the dimensionality of data and increase the performance of classification algorithms. A variety of feature selection methods have been presented in state-of-the-art literature to resolve feature selection problems such as large search space in high dimensional datasets like in microarray. However, it is a challenging task to identify the best feature selection method that suits a specific scenario or situation. In this paper, we present a comprehensive survey of the recent research work on feature selection methods, their types, strengths and weaknesses, and recent contributions in related areas. Current issues and challenges are also discussed to identify future research directions.

References

  1. Chapter 2 of book Data Classification, Algorithms and Applications by Charu C. Aggarwal Chapman and Hall/CRC 2014, Pages 37--64 Print ISBN: 978-1-4665-8674-1 eBook ISBN: 978-1-4665-8675-8Google ScholarGoogle Scholar
  2. H. Liu, R. Setiono, Chi2: feature selection and discretization of numeric attributes, in: Tools with Artificial Intelligence, 1995. Proceedings., Seventh International Conference on, IEEE, 1995, pp. 388--391. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. R.O. Duda, P.E. Hart, D.G. Stork, Pattern Classification, John Wiley & Sons, 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. J.R. Quinlan, Induction of decision trees, Mach. Learn. 1 (1) (1986) 81--106. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. I. Kononenko, Estimating attributes: analysis and extensions of relief, in: Machine Learning: ECML-94, Springer, 1994, pp. 171--182. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. H. Peng, F. Long, C. Ding, Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy, IEEE Trans. Pattern Anal. Mach. Intell. 27 (8) (2005) 1226--1238. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. V. Bolon-Canedo, N. Sanchez-Marono, A. Alonso-Betanzos, J.M. Benitez, F. Herrera, "A review of microarray datasets and applied feature selection Methods", Information Sciences 282 (2014) 111--135 Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning. Springer, 2001.Google ScholarGoogle ScholarCross RefCross Ref
  9. J. Weston, A. Elisseff, B. Schoelkopf, and M. Tipping. Use of the zero norm with linear models and kernel methods. Journal of Machine Learning Research, 3:1439--1461, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. L. Song, A. Smola, A. Gretton, K. Borgwardt, and J. Bedo. Supervised feature selection via dependence estimation. In International Conference on Machine Learning, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Z. Zhao and H. Liu. Semi-supervised feature selection via spectral analysis. In Proceedings of SIAM International Conference on Data Mining, 2007.Google ScholarGoogle ScholarCross RefCross Ref
  12. Z. Xu, R. Jin, J. Ye, M. Lyu, and I. King. Discriminative semi-supervised feature selection via manifold regularization. In IJCAI' 09: Proceedings of the 21th International Joint Conference on Artificial Intelligence, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. J.G. Dy and C.E. Brodley. Feature subset selection and order identification for unsupervised learning. In In Proc. 17th International Conference on Machine Learning, pages 247--254. Morgan Kaufmann, 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. P. Mitra, C. A. Murthy, and S. Pal. Unsupervised feature selection using feature similarity. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24:301--312, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. M. R. Sikonja and I. Kononenko. Theoretical and empirical analysis of Relief and ReliefF. Machine Learning, 53:23--69, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. M.A. Hall, Correlation-based Feature Selection for Machine Learning, PhD Thesis, The University of Waikato, 1999.Google ScholarGoogle Scholar
  17. H. Peng, F. Long, and C. Ding. Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy. IEEE Transactions on Pattern Analysis and Machine Intelligence, pages 1226--1238, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. H. Liu and L. Yu. Toward integrating feature selection algorithms for classification and clustering. IEEE Transactions on Knowledge and Data Engineering, 17(4):491, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. N.L. C. Talbot G. C. Cawley and M. Girolami. Sparse multinomial logistic regression via bayesian l1 regularization. In Neural Information Processing Systems, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. J. R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, 1993. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. S. Alelyani, J. Tang, and H. Liu. Feature selection for clustering: A review. Data Clustering: Algorithms and Applications, Editor: Charu Aggarwal and Chandan Reddy, CRC Press, 2013.Google ScholarGoogle Scholar
  22. V. Bolon-Canedo, N.Sanchez-Marono, A. Alonso-Betanzos, "Recent advances and emerging challenges of feature selection in the context of big data" Knowledge-Based Systems 86 (2015) 33--45 Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Z. Zhao, H. Liu, Searching for interacting features, in: IJCAI, vol. 7, 2007, pp. 1156--1161. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. V. Bolón-Canedo, N. Sánchez-Maroño, A. Alonso-Betanzos, A review of feature selection methods on synthetic data, Knowl. Inform. Syst. 34 (3) (2013) 483--519. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Zaffalon, M., Hutter, M.: Robust feature selection using distributions of mutual information. In: UAI. pp. 577--584 (2002) Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. I. Guyon, J. Weston, S. Barnhill, V. Vapnik, Gene selection for cancer classification using support vector machines, Mach. Learn. 46 (1--3) (2002) 389--422. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. L. Yu, H. Liu, Feature selection for high-dimensional data: a fast correlation-based filter solution, in: Machine Learning-International Workshop then Conference, vol. 20, 2003, p. 856. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. R. Kohavi and G.H. John. Wrappers for feature subset selection. Artificial intelligence, 97(1-2):273--324, 1997. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. M.A. Hall and L.A. Smith. Feature selection for machine learning: comparing a correlation-based filter approach to the wrapper. In Proceedings of the Twelfth International Florida Artificial Intelligence Research Society Conference, volume 235, page 239, 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. H. Liu and H. Motoda. Feature selection for knowledge discovery and data mining, volume 454. Springer, 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. M. Dash and H. Liu, "Feature selection for classification," Intell. Data Anal., vol. 1, nos. 1--4, pp. 131--156, 1997. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. I. Guyon, J. Weston, S. Barnhill, and V. Vapnik. Gene selection for cancer classification using support vector machines. Machine learning, 46(1-3):389--422, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. J. R. Quinlan. Induction of decision trees. Machine learning, 1(1):81--106, 1986. Google ScholarGoogle ScholarCross RefCross Ref
  34. R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B (Methodological), pages 267--288, 1996.Google ScholarGoogle ScholarCross RefCross Ref
  35. H. Zou. The adaptive lasso and its oracle properties. Journal of the American statistical association, 101(476):1418--1429, 2006.Google ScholarGoogle Scholar
  36. K. Knight and W. Fu. Asymptotics for lasso-type estimators. Annals of Statistics, pages 1356--1378, 2000.Google ScholarGoogle Scholar
  37. J. Huang, J. L. Horowitz, and S. Ma. Asymptotic properties of bridge estimators in sparse high-dimensional regression models. The Annals of Statistics, 36(2):587--613, 2008.Google ScholarGoogle ScholarCross RefCross Ref
  38. T. Li, C. Zhang, M. Ogihara, A comparative study of feature selection and multiclass classification methods for tissue classification based on gene expression, Bioinformatics 20 (15) (2004) 2429--2437. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. H. Zou and T. Hastie. Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 67(2):301--320, 2005.Google ScholarGoogle Scholar
  40. P. Pudil, J. Novovicová, and J. V. Kittler, "Floating search methods in feature selection," Pattern Recognit. Lett., vol. 15, no. 11, pp. 1119--1125, 1994. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. H. Uguz, A two-stage feature selection method for text categorization by using information gain, principal component analysis and genetic algorithm, Knowl.-Based Syst. 24 (7) (2011) 1024--1032. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. S. Ma and J. Huang. Penalized feature selection and classification in bioinformatics. Briefings in bioinformatics, 9(5):392--403, 2008.Google ScholarGoogle ScholarCross RefCross Ref
  43. R. Ruiz, J.C. Riquelme, J.S. Aguilar-Ruiz, Incremental wrapper-based gene selection from microarray data for cancer classification, Pattern Recognit. 39 (12) (2006) 2383--2392. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. J.W. Lee, J.B. Lee, M. Park, S.H. Song, An extensive comparison of recent classification tools applied to microarray data, Comput. Stat. Data Anal. 48 (4) (2005) 869--885Google ScholarGoogle ScholarCross RefCross Ref
  45. S. Dudoit, J. Fridlyand, T.P. Speed, Comparison of discrimination methods for the classification of tumors using gene expression data, J. Am. Stat. Assoc. 97 (457) (2002) 77--87.Google ScholarGoogle ScholarCross RefCross Ref
  46. R. Blanco, P. Larrañaga, I. Inza, B. Sierra, Gene selection for cancer classification using wrapper approaches, Int. J. Pattern Recognit. Artif. Intell. 18 (08) (2004) 1373--1390.Google ScholarGoogle ScholarCross RefCross Ref
  47. R. Ruiz, J.C. Riquelme, J.S. Aguilar-Ruiz, Incremental wrapper-based gene selection from microarray data for cancer classification, Pattern Recognit. 39 (12) (2006) 2383--2392. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. V. Bolón-Canedo, N. Sánchez-Maroño, A. Alonso-Betanzos, J.M. Benítez, F. Herrera, A review of microarray datasets and applied feature selection methods, Inform. Sci. 282 (2014) 111--135. Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. P.P. Ohanian, R.C. Dubes, Performance evaluation for four classes of textural features, Pattern Recognit. 25 (8) (1992) 819--833.Google ScholarGoogle ScholarCross RefCross Ref
  50. J. Lu, T. Zhao, Y. Zhang, Feature selection based-on genetic algorithm for image annotation, Knowl.-Based Syst. 21 (8) (2008) 887--891. Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. V. Bolon-Canedo, N.Sanchez-Marono, A. Alonso-Betanzos, "Recent advances and emerging challenges of feature selection in the context of big data" Knowledge-Based Systems 86 (2015) 33--45 Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. G. Forman, An extensive empirical study of feature selection metrics for text classification, J. Mach. Learn. Res. 3 (2003) 1289--1305. Google ScholarGoogle ScholarCross RefCross Ref
  53. H. Kim, P. Howland, H. Park, Dimension reduction in text classification with support vector machines, J. Mach. Learn. Res. (2005) 37--53. Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. G. Forman, Feature selection for text classification, Comput. Methods Feat. Sel. (2008) 257--276.Google ScholarGoogle Scholar
  55. K.-J. Wang, K.-H. Chen, and M.-A. Angelia, "An improved artificial immune recognition system with the opposite sign test for feature selection," Knowl. Based Syst., vol. 71, pp. 126--145, Nov. 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. B. Xue, M. Zhang, and W. N. Browne, "Particle swarm optimization for feature selection in classification: A multi-objective approach," IEEE Trans. Cybern., vol. 43, no. 6, pp. 1656--1671, Dec. 2013.Google ScholarGoogle ScholarCross RefCross Ref
  57. J. R. Vergara and P. A. Estévez, "A review of feature selection methods based on mutual information," Neural Comput. Appl., vol. 24, no. 1, pp. 175--186, 2014.Google ScholarGoogle ScholarCross RefCross Ref
  58. H. Peng, F. Long, and C. Ding, "Feature selection based on mutual information criteria of max-dependency, max-relevance, and minredundancy," IEEE Trans. Pattern Anal. Mach. Intell., vol. 27, no. 8, pp. 1226--1238, Aug. 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  59. X. Wang, J. Yang, X. Teng, W. Xia, and R. Jensen, "Feature selection based on rough sets and particle swarm optimization," Pattern Recognit. Lett., vol. 28, no. 4, pp. 459--471, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  60. E. Alpaydin, Introduction to Machine Learning. Cambridge, MA, USA: MIT Press, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  61. J. Tang and H. Liu, "Coselect: Feature selection with instance selection for social media data," in Proc. SIAM Int. Conf. Data Min. (SDM), Austin, TX, USA, 2013, pp. 695--703.Google ScholarGoogle ScholarCross RefCross Ref
  62. B. Xue, "Particle swarm optimization for feature selection," Ph.D. dissertation, School Eng. Comput. Sci., Victoria Univ. Wellington, Wellington, New Zealand, 2014.Google ScholarGoogle Scholar
  63. H. Liu and H. Motoda. Computational Methods of Feature Selection. Chapman and Hall/CRC Press, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  64. Y. Zhai, Y.-S. Ong, and I. W. Tsang, "The emerging 'big dimensionality,"' IEEE Comput. Intell. Mag., vol. 9, no. 3, pp. 14--26, Aug. 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  65. S. Wang, W. Pedrycz, Q. Zhu, and W. Zhu, "Subspace learning for unsupervised feature selection via matrix factorization," Pattern Recognit., vol. 48, no. 1, pp. 10--19, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  66. K.Mani, P.Kalpana, "A Review on Filter Based Feature Selection", International Journal of Innovative Research in Computer and Communication Engineering, Vol. 4, Issue 5, May 2016Google ScholarGoogle Scholar

Recommendations

Comments

Login options

Check if you have access through your login credentials or your institution to get full access on this article.

Sign in
  • Published in

    cover image ACM Other conferences
    IML '17: Proceedings of the 1st International Conference on Internet of Things and Machine Learning
    October 2017
    581 pages
    ISBN:9781450352437
    DOI:10.1145/3109761

    Copyright © 2017 ACM

    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    • Published: 17 October 2017

    Permissions

    Request permissions about this article.

    Request Permissions

    Check for updates

    Qualifiers

    • research-article

PDF Format

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader