skip to main content
10.1145/3110292.3110313acmotherconferencesArticle/Chapter ViewAbstractPublication PagesvricConference Proceedingsconference-collections
short-paper

Towards an upper limb self-rehabilitation assistance system after stroke

Authors Info & Claims
Published:22 March 2017Publication History

ABSTRACT

We designed an interactive system to assist motor rehabilitation of the upper limb after stroke. This work is based on an iterative design methodology centered on the users (patients and therapists). Our prototype makes it possible to carry out a repetitive pointing task with the natural manipulation of a virtual hand. The monitoring of the paretic hand is carried out via a low-cost capture device. Measures of performance are carried out and visual feedbacks are proposed to patients and therapists. The first tests are encouraging. The ultimate goal is to retain the medical benefits of traditional post-stroke methods, while reducing human costs (usable in semi-autonomy) and materials (general public), and facilitating active patient participation.

References

  1. F. Argelaguet, L. Hoyet, M. Trico, and A. Lécuyer. The role of interaction in virtual embodiment: Effects of the virtual hand representation. In Virtual Reality (VR), 2016 IEEE, pages 3--10. IEEE, 2016.Google ScholarGoogle ScholarCross RefCross Ref
  2. B. R. Ballester, M. Maier, R. M. San Segundo Mozo, V. Castañeda, A. Duff, and P. F. M.J. Verschure. Counteracting learned non-use in chronic stroke patients with reinforcement-induced movement therapy. Journal of NeuroEngineering and Rehabilitation, 13:74, 2016. ISSN 1743--0003.Google ScholarGoogle ScholarCross RefCross Ref
  3. I. Brunner, J. S. Skouen, H. a. Hofstad, L. I. Strand, F. Becker, A.-M. Sanders, H. Pallesen, T. Kristensen, M. Michielsen, and G. Verheyden. Virtual reality training for upper extremity in subacute stroke (VIRTUES): study protocol for a randomized controlled multicenter trial. BMC neurology, 14(1):186, 2014.Google ScholarGoogle ScholarCross RefCross Ref
  4. M.S. Cameirão, S. Bermüdezi Badia, E. Duarte, and P.F. Verschure. Virtual reality based rehabilitation speeds up functional recovery of the upper extremities after stroke: a randomized controlled pilot study in the acute phase of stroke using the rehabilitation gaming system. Restorative neurology and neuroscience, 29(5): 287--298, 2011.Google ScholarGoogle Scholar
  5. M. S. Cameirão, S. B. i Badia, E. Duarte, A. Frisoli, and P. F. Verschure. The combined impact of virtual reality neurorehabilitation and its interfaces on upper extremity functional recovery in patients with chronic stroke. Stroke, 43 (10):2720--2728, 2012.Google ScholarGoogle ScholarCross RefCross Ref
  6. M. S. Cameirão, A. Smailagic, G. Miao, and D. P. Siewiorek. Coaching or gaming? Implications of strategy choice for home based stroke rehabilitation. Journal of NeuroEngineering and Rehabilitation, 13(1), Dec. 2016. ISSN 1743--0003.Google ScholarGoogle ScholarCross RefCross Ref
  7. J. H. Crosbie, S. Lennon, M. C. McGoldrick, M. D. J. McNeill, J. W. Burke, and S. M. McDonough. Virtual reality in the rehabilitation of the upper limb after hemiplegic stroke: a randomised pilot study. In The 7th International Conference on Disability, Virtual Reality and Associated Technologies with ArtAbilitation, Maia, Portugal. ICDVRAT and the University of Reading, Reading, 2008. ISBN 978-0-7049-1500-8. OCLC: 874436279.Google ScholarGoogle Scholar
  8. A. L. Faria, J. Couras, M. S. Cameirão, T. Paulino, G. M. Costa, and S. B. i Badia. Impact of combined cognitive and motor rehabilitation in a virtual reality task: an on-going longitudinal study in the chronic phase of stroke. 2016.Google ScholarGoogle Scholar
  9. S. M. Hatem, G. Saussez, M. della Faille, V Prist, X. Zhang, D. Dispa, and Y. Bleyenheuft. Rehabilitation of motor function after stroke: a multiple systematic review focused on techniques to stimulate upper extremity recovery. Frontiers in Human Neuroscience, 10, 2016.Google ScholarGoogle Scholar
  10. N. Hocine, A. Gouaïch, S. A. Cerri, D. Mottet, J. Froger, and I. Laffont. Adaptation in serious games for upper-limb rehabilitation: an approach to improve training outcomes. User Modeling and User-Adapted Interaction, 25(1):65--98, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. S. H. Jang, S. H. You, M. Hallett, Y. W. Cho, C.-M. Park, S.-H. Cho, H.-Y. Lee, and T.-H. Kim. Cortical Reorganization and Associated Functional Motor Recovery After Virtual Reality in Patients With Chronic Stroke: An Experimenter-Blind Preliminary Study. Archives of Physical Medicine and Rehabilitation, 86(11): 2218--2223, Nov. 2005. ISSN 00039993.Google ScholarGoogle Scholar
  12. M. Khademi, H. Mousavi Hondori, A. McKenzie, L. Dodakian, C. V Lopes, and S. C. Cramer. Free-hand interaction with leap motion controller for stroke rehabilitation. pages 1663--1668. ACM Press, 2014. ISBN 978-1-4503-2474-8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. P. Kiper, L. Piron, A. Turolla, J. Stoek, and P. Tonin. The effectiveness of reinforced feedback in virtual environment in the first 12 months after stroke. Neurologia i Neurochirurgia Polska, 45(5):436--444, 2011. ISSN 00283843.Google ScholarGoogle Scholar
  14. K. E. Laver, S. George, S. Thomas, J. E. Deutsch, and M. Crotty. Virtual reality for stroke rehabilitation. The Cochrane Library, 2015.Google ScholarGoogle ScholarCross RefCross Ref
  15. I. Nojima, S. Koganemaru, T. Kawamata, H. Fukuyama, and T. Mima. Action observation with kinesthetic illusion can produce human motor plasticity. European Journal of Neuroscience, 41(12):1614--1623, June 2015. ISSN 0953816X.Google ScholarGoogle ScholarCross RefCross Ref
  16. L. Piron, A. Turolla, M. Agostini, C. Zucconi, F. Cortese, M. Zampolini, M. Zannini, M. Dam, L. Ventura, M. Battauz, and P. Tonin. Exercises for paretic upper limb after stroke: A combined virtual-reality and telemedicine approach. Journal of Rehabilitation Medicine, 41(12):1016--102, 2009. ISSN 1650--1977.Google ScholarGoogle ScholarCross RefCross Ref
  17. G. Saposnik, M. Mamdani, M. Bayley, K. E. Thorpe, J. Hall, L. G. Cohen, and R. Teasell. Effectiveness of Virtual Reality Exercises in STroke Rehabilitation (EVREST): rationale, design, and protocol of a pilot randomized clinical trial assessing the Wii gaming system. International Journal of Stroke, 5(1):47--51, 2010.Google ScholarGoogle ScholarCross RefCross Ref
  18. J.-H. Shin, H. Ryu, and S. H. Jang. A task-specific interactive game-based virtual reality rehabilitation system for patients with stroke: a usability test and two clinical experiments. Journal of neuroengineering and rehabilitation, 11(1):1, 2014.Google ScholarGoogle Scholar
  19. J.-F. Spieler, J.-L. Lanoë, and P. Amarenco. Costs of stroke care according to handicap levels and stroke subtypes. Cerebrovascular Diseases, 17(2-3):134--142, 2003.Google ScholarGoogle ScholarCross RefCross Ref
  20. A. Turolla, M. Dam, L. Ventura, P. Tonin, M. Agostini, C. Zucconi, P. Kiper, A. Cagnin, and L. Piron. Virtual reality for the rehabilitation of the upper limb motor function after stroke: a prospective controlled trial. Journal of neuroengineering and rehabilitation, 10(1):1, 2013.Google ScholarGoogle Scholar
  21. D. T. Wade, R. Langton-Hewer, V. A. Wood, C. E. Skilbeck, and H. M. Ismail. The hemiplegic arm after stroke: measurement and recovery. Journal of Neurology Neurosurgery & Psychiatry, 46(6):521--524, 1983.Google ScholarGoogle ScholarCross RefCross Ref
  22. C. J. Winstein, J. Stein, R. Arena, B. Bates, L. R. Cherney, S. C. Cramer, F. Deruyter, J. J. Eng, B. Fisher, R. L. Harvey, C. E. Lang, M. MacKay-Lyons, K. J. Ottenbacher, S. Pugh, M.J. Reeves, L. G. Richards, W. Stiers, and R. D. Zorowitz. Guidelines for Adult Stroke Rehabilitation and Recovery: A Guideline for Healthcare Professionals From the American Heart Association/American Stroke Association. Stroke, 47(6):e98--e169, June 2016. ISSN 0039-2499, 1524--4628.Google ScholarGoogle ScholarCross RefCross Ref
  23. F. Wittmann, J. P. Held, O. Lambercy, M. L. Starkey, A. Curt, R. Höver, R. Gassert, A. R. Luft, and R. R. Gonzenbach. Self-directed arm therapy at home after stroke with a sensor-based virtual reality training system. Journal of NeuroEngineering and Rehabilitation, 13, Aug. 2016. ISSN 1743-0003.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Towards an upper limb self-rehabilitation assistance system after stroke

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in
          • Published in

            cover image ACM Other conferences
            VRIC '17: Proceedings of the Virtual Reality International Conference - Laval Virtual 2017
            March 2017
            96 pages
            ISBN:9781450348584
            DOI:10.1145/3110292

            Copyright © 2017 ACM

            Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

            Publisher

            Association for Computing Machinery

            New York, NY, United States

            Publication History

            • Published: 22 March 2017

            Permissions

            Request permissions about this article.

            Request Permissions

            Check for updates

            Qualifiers

            • short-paper
            • Research
            • Refereed limited

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader