skip to main content
10.1145/3119881.3119893acmconferencesArticle/Chapter ViewAbstractPublication PagessapConference Proceedingsconference-collections
research-article

A visual model for quality driven refinement of global illumination

Published:16 September 2017Publication History

ABSTRACT

When rendering complex scenes using path-tracing methods, long processing times are required to calculate a sufficient number of samples for high quality results. In this paper, we propose a new method for priority sampling in path-tracing that exploits restrictions of the human visual system by recognizing whether an error is perceivable or not. We use the stationary wavelet transformation to efficiently calculate noise-contrasts in the image based on the standard error of the mean. We then use the Contrast Sensitivity Function and Contrast Masking of the Human Visual System to detect if an error is perceivable for any given pixel in the output image. Errors that can not be detected by a human observer are then ignored in further sampling steps, reducing the amount of samples calculated while producing the same perceived quality. This approach leads to a drastic reduction in the total number of samples required and therefore in total rendering time.

Skip Supplemental Material Section

Supplemental Material

References

  1. Mark R. Bolin and Gary W. Meyer. 1998. A perceptually based adaptive sampling algorithm. Proceedings of the 25th annual conference on Computer graphics and interactive techniques - SIGGRAPH '98 (1998), 299--309. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. a P Bradley. 1999. A wavelet visible difference predictor. IEEE transactions on image processing : a publication of the IEEE Signal Processing Society 8, 5 (Jan. 1999), 717--30. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. FW Campbell and JJ Kulikowski. 1966. Orientational selectivity of the human visual system. The Journal of physiology (1966), 437-445.Google ScholarGoogle Scholar
  4. DM Chandler and SS Hemami. 2007. VSNR: A wavelet-based visual signal-to-noise ratio for natural images. Image Processing, IEEE ... 16, 9 (2007), 2284--2298. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. PH Christensen. 1999. Faster photon map global illumination. Journal of graphics tools 4, April (1999), 1--10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Per H Christensen. 2008. Point-Based Approximate Color Bleeding. Building 2 (2008), 6. http://scholar.google.com/scholar?hl=enGoogle ScholarGoogle Scholar
  7. Per H Christensen and Dana Batali. 2004. An Irradiance Atlas for Global Illumination in Complex Production Scenes. Work (2004).Google ScholarGoogle Scholar
  8. Holger Dammertz, Daniel Sewtz, Johannes Hanika, and Hendrik P. A. Lensch. 2010. Edge-avoiding À-Trous Wavelet Transform for Fast Global Illumination Filtering. In Proceedings of the Conference on High Performance Graphics (HPG '10). Eurographics Association, Aire-la-Ville, Switzerland, Switzerland, 67--75. http://dl.acm.org/citation.cfm?id=1921479.1921491 Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Gabriel Eilertsen, Rafał K. Mantiuk, and Jonas Unger. 2015. Real-time Noise-aware Tone Mapping. ACM Trans. Graph. 34, 6, Article 198 (Oct. 2015), 15 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. James a. Ferwerda, Sumanta N. Pattanaik, Peter Shirley, and Donald P. Greenberg. 1996. A model of visual adaptation for realistic image synthesis. Proceedings of the 23rd annual conference on Computer graphics and interactive techniques - SIGGRAPH '96 (1996), 249--258. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. James a. Ferwerda, Peter Shirley, Sumanta N. Pattanaik, and Donald P. Greenberg. 1997. A model of visual masking for computer graphics. Proceedings of the 24th annual conference on Computer graphics and interactive techniques - SIGGRAPH '97 (1997), 143--152. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. D. G. Green and F. W. Campbell. 1965. Effect of Focus on the Visual Response to a Sinusoidally Modulated Spatial Stimulus. Journal of the Optical Society of America 55, 9 (Sept. 1965), 1154.Google ScholarGoogle ScholarCross RefCross Ref
  13. M. Holschneider, R. Kronland-Martinet, J. Morlet, and Ph. Tchamitchian. 1990. A Real-Time Algorithm for Signal Analysis with the Help of the Wavelet Transform. Springer Berlin Heidelberg, Berlin, Heidelberg, 286--297.Google ScholarGoogle Scholar
  14. Wolfgang Jaschinski-Kruza. 1988. Visual strain during VDU work: the effect of viewing distance and dark focus. Ergonomics 31, 10 (1988), 1449--1465.Google ScholarGoogle ScholarCross RefCross Ref
  15. HW Jensen. 1995. Importance driven path tracing using the photon map. Rendering Techniques' 95 (1995). http://link.springer.com/chapter/10.1007/978-3-7091-9430-0_31Google ScholarGoogle Scholar
  16. JT Kajiya. 1986. The Rendering Equation. ACM Siggraph Computer Graphics 20, 4 (1986), 143--150. http://dl.acm.org/citation.cfm?id=15902 Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. YK Lai and C.-CJay Kuo. 2000. A Haar wavelet approach to compressed image quality measurement. Journal of Visual Communication and Image ... 11, 1 (March 2000), 17--40. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Gregory Ward Larson, Holly Rushmeier, and Christine Piatko. 1997. A Visibility Matching Tone Reproduction Operator for High Dynamic Range Scenes. IEEE Transactions on Visualization and Computer Graphics 3, 4 (Oct. 1997), 291--306. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Gordon E. Legge and John M. Foley. 1980. Contrast masking in human vision. Journal of the Optical Society of America 70, 12 (Dec. 1980), 1458.Google ScholarGoogle ScholarCross RefCross Ref
  20. J. Mannos and D. Sakrison. 1974. The effects of a visual fidelity criterion of the encoding of images. IEEE Transactions on Information Theory 20, 4 (July 1974), 525--536. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Rafał Mantiuk, Kil Joong Kim, Allan G Rempel, and Wolfgang Heidrich. 2011. Hdr-Vdp-2. ACM SIGGRAPH 2011 papers on - SIGGRAPH '11 (2011), 1.Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Bochang Moon, Nathan Carr, and Sung-Eui Yoon. 2014. Adaptive Rendering Based on Weighted Local Regression. ACM Trans. Graph. 33, 5, Article 170 (Sept. 2014), 14 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Karol Myszkowski, Takehiro Tawara, Hiroyuki Akamine, and Hans-Peter Seidel. 2001. Perception-guided global illumination solution for animation rendering. Proceedings of the 28th annual conference on Computer graphics and interactive techniques -SIGGRAPH '01 (2001), 221--230. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Harry Nyquist. 1928. Certain topics in telegraph transmission theory. (1928). Mahesh Ramasubramanian, Sumanta N. Pattanaik, and Donald P. Greenberg. 1999. A perceptually based physical error metric for realistic image synthesis. Proceedings of the 26th annual conference on Computer graphics and interactive techniques - SIGGRAPH '99 (1999), 73--82. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Fabrice Rousselle, Claude Knaus, and Matthias Zwicker. 2012. Adaptive rendering with non-local means filtering. ACM Transactions on Graphics 31, 6 (2012), 1. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Pradeep Sen and Soheil Darabi. 2012a. On Filtering the Noise from the Random Parameters in Monte Carlo Rendering. ACM Trans. Graph. 31, 3, Article 18 (May 2012), 15 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Pradeep Sen and Soheil Darabi. 2012b. On filtering the noise from the random parameters in Monte Carlo rendering. ACM Trans. Graph. 31, 3 (2012), 18. Student. 1908. The probable error of a mean. Biometrika (1908), 1--25. Eric Tabellion and A Lamorlette. 2004. An approximate global illumination system for computer generated films. ACM Transactions on Graphics (TOG) (2004), 469--476. http://dl.acm.org/citation.cfm?id=1015748 Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. MM Taylor. 1963. Visual discrimination and orientation. JOSA 6 (1963), 1--3. http://www.opticsinfobase.org/abstract.cfm?uri=josa-53-6-763Google ScholarGoogle Scholar
  29. Philippe Thévenaz, Thierry Blu, and Michael Unser. 2000. Interpolation revisited {medical images application}. IEEE Transactions on medical imaging 19, 7 (2000), 739--758.Google ScholarGoogle ScholarCross RefCross Ref
  30. Eric Veach and Leonidas J Guibas. 1995. Optimally combining sampling techniques for Monte Carlo rendering. In Proceedings of the 22nd annual conference on Computer graphics and interactive techniques. ACM, 419--428. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Eric Veach and Leonidas J Guibas. 1997. Metropolis light transport. In Proceedings of the 24th annual conference on Computer graphics and interactive techniques. ACM Press/Addison-Wesley Publishing Co., 65--76. Sean Wallis. 2013. Binomial Confidence Intervals and Contingency Tests: Mathematical Fundamentals and the Evaluation of Alternative Methods. Journal of Quantitative Linguistics 20, 3 (2013), 178--208. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Zhou Wang and AC Bovik. 2004. Image quality assessment: from error visibility to structural similarity. Image Processing, IEEE Transactions on 13, 4 (2004), 600--612. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1284395 Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Greg Ward. 1994. Graphics Gems IV Academic Press Professional, Inc., San Diego, CA, USA, Chapter A Contrast-based Scalefactor for Luminance Display, 415--421. http://dl.acm.org/citation.cfm?id=180895.180934 Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Stefan Winkler. 1998. A Perceptual Distortion Metric for Digital Color Images.. In Proc. ICIP (3). 399--403.Google ScholarGoogle ScholarCross RefCross Ref
  35. Stefan Winkler. 1999. Perceptual distortion metric for digital color video. In Human Vision and Electronic Imaging IV (Proc. SPIE), Vol. 3644. 175--184.Google ScholarGoogle ScholarCross RefCross Ref
  36. Stefan Winkler and S Susstrunk. 2004. Visibility of noise in natural images. Electronic Imaging 2004 (2004), 121--129. http://link.aip.org/link/?PSI/5292/121/1&Agg=doihttp://proceedings.spiedigitallibraryorg/proceeding.aspx?articleid=836789Google ScholarGoogle Scholar

Index Terms

  1. A visual model for quality driven refinement of global illumination

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Conferences
        SAP '17: Proceedings of the ACM Symposium on Applied Perception
        September 2017
        101 pages
        ISBN:9781450351485
        DOI:10.1145/3119881

        Copyright © 2017 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 16 September 2017

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

        Acceptance Rates

        Overall Acceptance Rate43of94submissions,46%
      • Article Metrics

        • Downloads (Last 12 months)3
        • Downloads (Last 6 weeks)0

        Other Metrics

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader