skip to main content
research-article

Visual Quality Assessment of 3D Models: On the Influence of Light-Material Interaction

Published:06 October 2017Publication History
Skip Abstract Section

Abstract

Geometric modifications of three-dimensional (3D) digital models are commonplace for the purpose of efficient rendering or compact storage. Modifications imply visual distortions that are hard to measure numerically. They depend not only on the model itself but also on how the model is visualized. We hypothesize that the model’s light environment and the way it reflects incoming light strongly influences perceived quality. Hence, we conduct a perceptual study demonstrating that the same modifications can be masked, or conversely highlighted, by different light-matter interactions. Additionally, we propose a new metric that predicts the perceived distortion of 3D modifications for a known interaction. It operates in the space of 3D meshes with the object’s appearance, that is, the light emitted by its surface in any direction given a known incoming light. Despite its simplicity, this metric outperforms 3D mesh metrics and competes with sophisticated perceptual image-based metrics in terms of correlation to subjective measurements. Unlike image-based methods, it has the advantage of being computable prior to the costly rendering steps of image projection and rasterization of the scene for given camera parameters.

Skip Supplemental Material Section

Supplemental Material

References

  1. Tunç Ozan Aydin, Martin Čadík, Karol Myszkowski, and Hans-Peter Seidel. 2010. Video quality assessment for computer graphics applications. ACM Trans. Graph. 29, 6 (Dec. 2010), 1.Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Francesco Banterle, Patrick Ledda, Kurt Debattista, Marina Bloj, Alessandro Artusi, and Alan Chalmers. 2009. A psychophysical evaluation of inverse tone mapping techniques. Comput. Graph. Forum 28, 1 (2009), 13--25. Google ScholarGoogle ScholarCross RefCross Ref
  3. Martin Čadík, Robert Herzog, Rafal Mantiuk, Radoslaw Mantiuk, Karol Myszkowski, and Hans-Peter Seidel. 2013. Learning to predict localized distortions in rendered images. Comput. Graph. Forum 32, 7 (2013), 401--410. DOI:https://doi.org/10.1111/cgf.12248Google ScholarGoogle ScholarCross RefCross Ref
  4. Massimiliano Corsini, Elisa Drelie Gelasca, Touradj Ebrahimi, and Mauro Barni. 2007. Watermarked 3-D mesh quality assessment. IEEE Trans. Multimedia 9, 2 (Feb. 2007), 247--256. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Massimiliano Corsini, Mohamed-Chaker Larabi, Guillaume Lavoué, Oldrich Petrík, Libor Vása, and Kai Wang. 2013. Perceptual metrics for static and dynamic triangle meshes. Comput. Graph. Forum 32, 1 (Feb. 2013), 101--125. DOI:https://doi.org/10.1111/cgf.12001 Improved version of Eurographics State-of-the-Art Report.Google ScholarGoogle ScholarCross RefCross Ref
  6. Scott Daly. 1993. The visible differences predictor: An algorithm for the assessment of image fidelity. In Digital Images and Human Vision, Andrew B. Watson (Ed.). MIT Press, Cambridge, 179--206.Google ScholarGoogle Scholar
  7. Jiří Filip, Michael J. Chantler, Patrick R. Green, and Michal Haindl. 2008. A psychophysically validated metric for bidirectional texture data reduction. ACM Trans. Graph. 27, 5, Article 138 (Dec. 2008), 11 pages. DOI:https://doi.org/10.1145/1409060.1409091Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Jirí Filip, Radomír Vávra, Michal Havlícek, and Mikulás Krupicka. 2017. Predicting visual perception of material structure in virtual environments. Comput. Graph. Forum 36, 1 (2017), 89--100. DOI:https://doi.org/10.1111/cgf.12789Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Adria Fores, James Ferwerda, and Jinwei Gu. 2012. Toward a perceptually based metric for BRDF modeling. In Proceedings of the 20th Color and Imaging Conference. 142--148.Google ScholarGoogle Scholar
  10. F. Gao, D. Tao, X. Gao, and X. Li. 2015. Learning to rank for blind image quality assessment. IEEE Trans. Neur. Netw. Learn. Syst. 26, 10 (Oct. 2015), 2275--2290. 2162-237XDOI:https://doi.org/10.1109/TNNLS.2014.2377181Google ScholarGoogle ScholarCross RefCross Ref
  11. Michael Garland and Paul S. Heckbert. 1998. Simplifying surfaces with color and texture using quadric error metrics. In Proceedings of the Conference on Visualization’98 (VIS’98). IEEE Computer Society Press, Los Alamitos, CA, 263--269. Google ScholarGoogle ScholarCross RefCross Ref
  12. Jinjiang Guo, Vincent Vidal, Irene Cheng, Anup Basu, Atilla Baskurt, and Guillaume Lavoue. 2016. Subjective and objective visual quality assessment of textured 3D meshes. ACM Trans. Appl. Percept. 14, 2, Article 11 (Oct. 2016), 20 pages. DOI:https://doi.org/10.1145/2996296Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Michael Guthe, Gero Müller, Martin Schneider, and Reinhard Klein. 2009. BTF-CIELab: A perceptual difference measure for quality assessment and compression of BTFs. Comput. Graph. Forum 28, 1 (Mar. 2009), 101--113. Google ScholarGoogle ScholarCross RefCross Ref
  14. Robert Herzog, Martin Čadík, Tunç O. Aydın, Kwawng In Kim, Karol Myszkowski, and Hans-Peter Seidel. 2012. NoRM: No-reference image quality metric for realistic image synthesis. Comput. Graph. Forum 31, 2 (2012), 545--554. DOI:https://doi.org/10.1111/j.1467-8659.2012.03055.xGoogle ScholarGoogle ScholarDigital LibraryDigital Library
  15. Adrian Jarabo, Hongzhi Wu, Julie Dorsey, Holly Rushmeier, and Diego Gutierrez. 2014. Effects of approximate filtering on the appearance of bidirectional texture functions. IEEE Trans. Visualiz. Comput. Graph. XX, Xx (2014), 1--14.Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Maurice G. Kendall and B. Babington Smith. 1940. On the method of paired comparisons. Biometrika 31, 3/4 (1940), 324--345. Google ScholarGoogle ScholarCross RefCross Ref
  17. Guillaume Lavoué. 2011. A multiscale metric for 3D mesh visual quality assessment. Comput. Graph. Forum 30, 5 (2011), 1427--1437.Google ScholarGoogle ScholarCross RefCross Ref
  18. Guillaume Lavoué, Mohamed-Chaker Larabi, and Libor Vasa. 2016. On the efficiency of image metrics for evaluating the visual quality of 3D models. IEEE Trans. Visualiz. Comput. Graph. 22, 8 (Aug. 2016), 12.Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Patrick Ledda, Alan Chalmers, Tom Troscianko, and Helge Seetzen. 2005. Evaluation of tone mapping operators using a high dynamic range display. ACM Trans. Graph. 24, 3 (Jul. 2005), 640. 07300301Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Frédéric B. Leloup, Michael R. Pointer, Philip Dutré, and Peter Hanselaer. 2010. Geometry of illumination, luminance contrast, and gloss perception. Int. J. Occupat. Safety Ergonom. 27, 9 (2010), 2046--2054.Google ScholarGoogle Scholar
  21. Peter Lindstrom and Greg Turk. 2000. Image-driven simplification. ACM Trans. Graph. 19, 3 (Jul. 2000), 204--241. DOI:https://doi.org/10.1145/353981.353995Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Yiming Liu, Jue Wang, Sunghyun Cho, Adam Finkelstein, and Szymon Rusinkiewicz. 2013. A no-reference metric for evaluating the quality of motion deblurring. ACM Trans. Graph. 32, 6, Article 175 (Nov. 2013), 12 pages. DOI:https://doi.org/10.1145/2508363.2508391Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Jeffrey Lubin. 1993. The use of psychophysical data and models in the analysis of display system performance. In Digital Images and Human Vision, A. B. Watson (Ed.). 163--178.Google ScholarGoogle Scholar
  24. Jeffrey Lubin. 1995. A visual discrimination model for imaging system design and evaluation. Vis. Models Target Detect. Recogn. 2 (1995), 245--357. Google ScholarGoogle ScholarCross RefCross Ref
  25. Rafat Mantiuk, Kil Joong Kim, Allan G. Rempel, and Wolfgang Heidrich. 2011. HDR-VDP-2: A calibrated visual metric for visibility and quality predictions in all luminance conditions. In ACM SIGGRAPH 2011 Papers (SIGGRAPH’11). ACM, New York, NY, Article 40, 14 pages. DOI:https://doi.org/10.1145/1964921.1964935Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Rafał K. Mantiuk, Anna Tomaszewska, and Radosław Mantiuk. 2012. Comparison of four subjective methods for image quality assessment. Comput. Graph. Forum 31, 8 (Dec. 2012), 2478--2491.Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Nicolas Menzel and Michael Guthe. 2010. Towards perceptual simplification of models with arbitrary materials. Comput. Graph. Forum 29, 7 (2010), 2261--2270. Google ScholarGoogle ScholarCross RefCross Ref
  28. Georges Nader, Kai Wang, Franck Hétroy-Wheeler, and Florent Dupont. 2016. Just noticeable distortion profile for flat-shaded 3D mesh surfaces. IEEE Trans. Visualiz. Comput. Graph. 22, 11 (Nov. 2016), 2423--2436. DOI:https://doi.org/10.1109/TVCG.2015.2507578Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Yixin Pan, I. Cheng, and A. Basu. 2005. Quality metric for approximating subjective evaluation of 3-D objects. IEEE Trans. Multimedia 7, 2 (apr 2005), 269--279. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Bui Tuong Phong. 1975. Illumination for computer generated pictures. Commun. ACM 18, 6 (June 1975), 311--317. DOI:https://doi.org/10.1145/360825.360839Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Jens Preiss, Felipe Fernandes, and Philipp Urban. 2014. Color-image quality assessment: From prediction to optimization. IEEE Trans. Image Process. 23, 3 (2014), 1366--1378. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. L. Qu and G. W. Meyer. 2008. Perceptually guided polygon reduction. IEEE Trans. Visualiz. Comput. Graph. 14, 5 (Sept 2008), 1015--1029. DOI:https://doi.org/10.1109/TVCG.2008.51Google ScholarGoogle Scholar
  33. Filippo Stanco, Sebastiano Battiato, and Giovanni Gallo. 2011. Digital Imaging for Cultural Heritage Preservation: Analysis, Restoration, and Reconstruction of Ancient Artworks. CRC Press.Google ScholarGoogle Scholar
  34. Louis L. Thurstone. 1927. A law of comparative judgment. Psychol. Rev. 34, 4 (1927), 273. Google ScholarGoogle ScholarCross RefCross Ref
  35. Dihong Tian and G. AlRegib. 2008. Batex3: Bit allocation for progressive transmission of textured 3-d models. IEEE Trans. Circ. Syst. Vid. Technol. 18, 1 (2008), 23--35. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Fakhri Torkhani, Kai Wang, and Jean-Marc Chassery. 2012. A curvature tensor distance for mesh visual quality assessment. In Proceedings of the International Conference on Computer Vision and Graphics (ICCVG 2012), Vol. 7594. Springer-Verlag, New York, NY, 253--263. DOI:https://doi.org/10.1007/978-3-642-33564-8_31Google ScholarGoogle ScholarCross RefCross Ref
  37. Fakhri Torkhani, Kai Wang, and Jean Marc Chassery. 2015. Perceptual quality assessment of 3D dynamic meshes: Subjective and objective studies. Sign. Process. Image Commun. 31 (2015), 185--204. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. K. Vanhoey, B. Sauvage, O. Génevaux, F. Larue, and J.-M. Dischler. 2013. Robust fitting on poorly sampled data for surface light field rendering and image relighting. Comput. Graph. Forum 32, 6 (2013), 101--112. DOI:https://doi.org/10.1111/cgf.12073Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Kenneth Vanhoey, Basile Sauvage, Pierre Kraemer, Frédéric Larue, and Jean-Michel Dischler. 2015. Simplification of meshes with digitized radiance. Vis. Comput. 31, 6--8 (2015), 1011--1021. DOI:https://doi.org/10.1007/s00371-015-1124-9Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Libor Vásǎ and Jan Rus. 2012. Dihedral angle mesh error: A fast perception correlated distortion measure for fixed connectivity triangle meshes. Comput. Graph. Forum 31, 5 (2012), 1715--1724. DOI:https://doi.org/10.1111/j.1467-8659.2012.03176.xGoogle ScholarGoogle ScholarDigital LibraryDigital Library
  41. Bruce Walter, Sumanta N. Pattanaik, and Donald P. Greenberg. 2002. Using perceptual texture masking for efficient image synthesis. In Computer Graphics Forum, Vol. 21. Wiley Online Library, 393--399.Google ScholarGoogle Scholar
  42. Kai Wang, Fakhri Torkhani, and Annick Montanvert. 2012. A fast roughness-based approach to the assessment of 3D mesh visual quality. Comput. Graph. 36, 7 (Nov. 2012), 808--818. DOI:https://doi.org/10.1016/j.cag.2012.06.004Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Zhou Wang and Alan C. Bovik. 2006. Modern Image Quality Assessment. Morgan 8 Claypool. DOI:https://doi.org/10.2200/S00010ED1V01Y200508IVM003Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Zhou Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli. 2004. Image quality assessment: From error visibility to structural similarity. Trans. Img. Proc. 13, 4 (April 2004), 600--612. DOI:https://doi.org/10.1109/TIP.2003.819861Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Z. Wang, E. P. Simoncelli, and A. C. Bovik. 2003. Multi-scale structural similarity for image quality assessment. Conf. Rec. Asilomar Conf. Sign. Syst. Comput. 2, 1398--1402.Google ScholarGoogle ScholarCross RefCross Ref
  46. Benjamin Watson, Alinda Friedman, and Aaron McGaffey. 2001. Measuring and predicting visual fidelity. In Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH’01). ACM, New York, NY, 213--220. DOI:https://doi.org/10.1145/383259.383283Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Nathaniel Williams, David Luebke, Jonathan D. Cohen, Michael Kelley, and Brenden Schubert. 2003. Perceptually guided simplification of lit, textured meshes. In Proceedings of the 2003 Symposium on Interactive 3D Graphics (I3D’03). ACM, New York, NY, 113--121. DOI:https://doi.org/10.1145/641480.641503Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Daniel N. Wood, Daniel I. Azuma, Ken Aldinger, Brian Curless, Tom Duchamp, David H. Salesin, and Werner Stuetzle. 2000. Surface light fields for 3D Photography. In Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH’00). ACM Press/Addison-Wesley Publishing Co., New York, NY, 287--296. DOI:https://doi.org/10.1145/344779.344925Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. Hojatollah Yeganeh and Zhou Wang. 2013. Objective quality assessment of tone-mapped images. IEEE Trans. Image Process. 22, 2 (2013), 657--667. 10577149DOI:https://doi.org/10.1109/TIP.2012.2221725Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Visual Quality Assessment of 3D Models: On the Influence of Light-Material Interaction

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image ACM Transactions on Applied Perception
          ACM Transactions on Applied Perception  Volume 15, Issue 1
          January 2018
          122 pages
          ISSN:1544-3558
          EISSN:1544-3965
          DOI:10.1145/3128284
          Issue’s Table of Contents

          Copyright © 2017 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 6 October 2017
          • Accepted: 1 June 2017
          • Revised: 1 April 2017
          • Received: 1 January 2017
          Published in tap Volume 15, Issue 1

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article
          • Research
          • Refereed

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader