skip to main content
research-article

Gradient-domain path reusing

Published:20 November 2017Publication History
Skip Abstract Section

Abstract

Monte-Carlo rendering algorithms have traditionally a high computational cost, because they rely on tracing up to billions of light paths through a scene to physically simulate light transport. Traditional path reusing amortizes the cost of path sampling over multiple pixels, but introduces visually unpleasant correlation artifacts and cannot handle scenes with specular light transport. We present gradient-domain path reusing, a novel unbiased Monte-Carlo rendering technique, which merges the concept of path reusing with the recently introduced idea of gradient-domain rendering. Since correlation is a key element in gradient sampling, it is a natural fit to be performed together with path reusing and we show that the typical artifacts of path reusing are significantly reduced by exploiting the gradient domain. Further, by employing the tools for shifting paths that were designed in the context of gradient-domain rendering over the last years, we can generalize path reusing to support arbitrary scenes including specular light transport. Our method is unbiased and currently the fastest converging unidirectional rendering technique outperforming conventional and gradient-domain path tracing by up to almost an order of magnitude.

References

  1. James Arvo and David Kirk. 1990. Particle Transport and Image Synthesis. In Proceedings of the 17th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH '90). ACM, 63--66. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Philippe Bekaert, Mateu Sbert, and John Halton. 2002. Accelerating Path Tracing by Re-using Paths. In Proceedings of the 13th Eurographics Workshop on Rendering (EGRW '02). Eurographics Association, 125--134. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Pravin Bhat, C. Lawrence Zitnick, Michael Cohen, and Brian Curless. 2010. GradientShop: A Gradient-domain Optimization Framework for Image and Video Filtering. ACM Trans. Graph. 29, 2, Article 10 (April 2010), 14 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Francesc Castro, Mateu Sbert, and John H. Halton. 2008. Efficient Reuse of Paths for Random Walk Radiosity. Comput. Graph. 32, 1 (Feb. 2008), 65--81. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Robert L. Cook, Thomas Porter, and Loren Carpenter. 1984. Distributed Ray Tracing. In Proceedings of the 11th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH '84). ACM, 137--145. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Tomáš Davidovič, Jaroslav Křivánek, Miloš Hašan, Philipp Slusallek, and Kavita Bala. 2010. Combining Global and Local Virtual Lights for Detailed Glossy Illumination. In ACM SIGGRAPH Asia 2010 Papers. ACM, Article 143, 8 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Binh-Son Hua, Adrien Gruson, Derek Nowrouzezahrai, and Toshiya Hachisuka. 2017. Gradient-Domain Photon Density Estimation. Computer Graphics Forum (2017). Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Wenzel Jakob. 2010a. Mitsuba renderer. (2010). http://www.mitsuba-renderer.org.Google ScholarGoogle Scholar
  9. Wenzel Jakob. 2010b. Mitsuba renderer. (2010). http://www.mitsuba-renderer.org.Google ScholarGoogle Scholar
  10. Wenzel Jakob and Steve Marschner. 2012. Manifold Exploration: A Markov Chain Monte Carlo Technique for Rendering Scenes with Difficult Specular Transport. ACM Trans. Graph. 31, 4, Article 58 (July 2012), 13 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Henrik Wann Jensen. 1996. Global Illumination Using Photon Maps. In Proceedings of the Eurographics Workshop on Rendering Techniques '96. 21--30. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. James T. Kajiya. 1986. The Rendering Equation. SIGGRAPH Comput. Graph. 20, 4 (Aug. 1986), 143--150. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Alexander Keller. 1997. Instant Radiosity. In Proceedings of the 24th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH 97). 49--56. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Markus Kettunen, Marco Manzi, Miika Aittala, Jaakko Lehtinen, Frédo Durand, and Matthias Zwicker. 2015. Gradient-domain Path Tracing. ACM Trans. Graph. 34, 4, Article 123 (July 2015), 13 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Jaakko Lehtinen, Tero Karras, Samuli Laine, Miika Aittala, Frédo Durand, and Timo Aila. 2013. Gradient-domain Metropolis Light Transport. ACM Trans. Graph. 32, 4, Article 95 (July 2013), 12 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Anat Levin, Assaf Zomet, Shmuel Peleg, and Yair Weiss. 2006. Seamless image stitching in the gradient domain. In Proceedings of the European Conference on Computer Vision.Google ScholarGoogle Scholar
  17. Marco Manzi, Markus Kettunen, Miika Aittala, Jaakko Lehtinen, Frédo Durand, and Matthias Zwicker. 2015. Gradient-Domain Bidirectional Path Tracing. In Eurographics Symposium on Rendering - Experimental Ideas & Implementations.Google ScholarGoogle Scholar
  18. Marco Manzi, Markus Kettunen, Frédo Durand, Matthias Zwicker, and Jaakko Lehtinen. 2016. Temporal Gradient-domain Path Tracing. ACM Trans. Graph. 35, 6, Article 246 (2016), 9 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Marco Manzi, Fabrice Rousselle, Markus Kettunen, Jaakko Lehtinen, and Matthias Zwicker. 2014. Improved Sampling for Gradient-domain Metropolis Light Transport. ACM Trans. Graph. 33, 6, Article 178 (Nov. 2014), 12 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. M. Manzi, D. Vicini, and M. Zwicker. 2016. Regularizing Image Reconstruction for Gradient-Domain Rendering with Feature Patches. Computer Graphics Forum 35, 2 (2016), 263--273.Google ScholarGoogle ScholarCross RefCross Ref
  21. Patrick Pérez, Michel Gangnet, and Andrew Blake. 2003. Poisson Image Editing. ACM Trans. Graph. 22, 3 (July 2003), 313--318. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Matt Pharr, Wenzel Jakob, and Greg Humphreys. 2016. Physically Based Rendering, Third Edition: From Theory To Implementation (3nd ed.). Morgan Kaufmann Publishers Inc., San Francisco, CA, USA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Stefan Popov, Ravi Ramamoorthi, Frédo Durand, and George Drettakis. 2015. Probabilistic Connections for Bidirectional Path Tracing. In Proceedings of the 26th Eurographics Symposium on Rendering (EGSR '15). Eurographics Association, 75--86.Google ScholarGoogle ScholarCross RefCross Ref
  24. Fabrice Rousselle, Wojciech Jarosz, and Jan Novák. 2016. Image-space Control Variates for Rendering. ACM Transactions on Graphics (Proceedings of SIGGRAPH Asia) 35, 6 (December 2016), 169:1--169:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Fabrice Rousselle, Claude Knaus, and Matthias Zwicker. 2012. Adaptive rendering with non-local means filtering. ACM Transactions on Graphics (Proceedings of ACM SIGGRAPH Asia 2012) 31, 6 (Nov. 2012). Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Daniel L Ruderman. 1994. The statistics of natural images. Network: Computation in Neural Systems 5, 4 (1994), 517--548.Google ScholarGoogle ScholarCross RefCross Ref
  27. Mateu Sbert and JHalton. 2004. Reuse of paths in light source animation. In Proceedings of Computer Graphics International. IEEE, 532--535. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. B. Segovia, J. C. Iehl, R. Mitanchey, and B. Péroche. 2006. Bidirectional Instant Radiosity. In Proceedings of the 17th Eurographics Conference on Rendering Techniques (EGSR '06). Eurographics Association, 389--397. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Peter Shirley, Bretton Wade, Philip M. Hubbard, David Zareski, Bruce Walter, and Donald P. Greenberg. 1995. Global Illumination via Density-Estimation. 219--230.Google ScholarGoogle Scholar
  30. Weilun Sun, Xin Sun, Nathan A. Carr, Derek Nowrouzezahrai, and Ravi Ramamoorthi. 2017. Gradient-Domain Vertex Connection and Merging. In Eurographics Symposium on Rendering - Experimental Ideas & Implementations.Google ScholarGoogle Scholar
  31. Eric Veach. 1998. Robust Monte Carlo Methods for Light Transport Simulation. Ph.D. Dissertation. Stanford, CA, USA. Advisor(s) Guibas, Leonidas J. AAI9837162. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Eric Veach and Leonidas J. Guibas. 1995. Optimally Combining Sampling Techniques for Monte Carlo Rendering. In Proceedings of the 22Nd Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH '95). ACM, 419--428. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Eric Veach and Leonidas J. Guibas. 1997. Metropolis Light Transport. In Proceedings of the 24th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH 97). 65--76. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Jiří Vorba and Jaroslav Křivánek. 2016. Adjoint-Driven Russian Roulette and Splitting in Light Transport Simulation. ACM Trans. Graph. 35, 4 (July 2016), 1--11. (accepted for publication). Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Gregory J. Ward, Francis M. Rubinstein, and Robert D. Clear. 1988. A Ray Tracing Solution for Diffuse Interreflection. SIGGRAPH Comput. Graph. 22, 4 (June 1988), 85--92. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Qing Xu and Mateu Sbert. 2007. A New Way to Re-using Paths. In Proceedings of the 2007 International Conference on Computational Science and Its Applications - Volume Part II (ICCSA'07). 741--750. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Gradient-domain path reusing

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 36, Issue 6
      December 2017
      973 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/3130800
      Issue’s Table of Contents

      Copyright © 2017 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 20 November 2017
      Published in tog Volume 36, Issue 6

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader