skip to main content
10.1145/3132272.3134136acmconferencesArticle/Chapter ViewAbstractPublication PagesissConference Proceedingsconference-collections
demonstration

Typing on a Smartwatch for Smart Glasses

Published:17 October 2017Publication History

ABSTRACT

While smart glasses make information more accessible in mobile scenarios, entering text on these devices is still difficult. In this paper, we suggest using a smartwatch as an indirect input device for smart glasses text entry. With the watch-glasses combination, users do not need to lift the arm to touch the glasses nor need to carry a special external input device. To prove the feasibility of the suggested combination, we implemented two text entry methods: a modified version of SwipeBoard, which we adapted for the suggested combination, and HoldBoard, which we newly designed and implemented specifically for the suggested combination. We evaluated the performances of the two text entry methods through two user studies, and could show that they are faster than prior art for smart glasses text entry in a seated condition. A further study showed that they are competitive with the prior art also in a walking condition.

References

  1. Chaparro, B. S., He, J., Turner, C., and Turner, K. Is touch-based text input practical for a smartwatch? In International Conference on Human-Computer Interaction, Springer (2015), 3--8. Google ScholarGoogle ScholarCross RefCross Ref
  2. Chen, X. A., Grossman, T., and Fitzmaurice, G. Swipeboard: A text entry technique for ultra-small interfaces that supports novice to expert transitions. In Proc. UIST '14, ACM (2014), 615--620. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Gordon, M., Ouyang, T., and Zhai, S. Watchwriter: Tap and gesture typing on a smartwatch miniature keyboard with statistical decoding. In Proc. CHI '16, ACM (2016), 3817--3821. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Grossman, T., Chen, X. A., and Fitzmaurice, G. Typing on glasses: Adapting text entry to smart eyewear. In Proc. MobileHCI '15, ACM (2015), 144--152. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Gupta, A., and Balakrishnan, R. Dualkey: Miniature screen text entry via finger identification. In Proc. CHI '16, ACM (2016), 59--70. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Harrison, C., and Faste, H. Implications of location and touch for on-body projected interfaces. In Proc. DIS '14, ACM (2014), 543--552. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Harrison, C., and Hudson, S. E. Providing dynamically changeable physical buttons on a visual display. In Proc. CHI '09, ACM (2009), 299--308. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Hincapié-Ramos, J. D., Guo, X., Moghadasian, P., and Irani, P. Consumed endurance: A metric to quantify arm fatigue of mid-air interactions. In Proc. CHI '14, ACM (2014), 1063--1072. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Hinckley, K., Heo, S., Pahud, M., Holz, C., Benko, H., Sellen, A., Banks, R., O'Hara, K., Smyth, G., and Buxton, W. Pre-touch sensing for mobile interaction. In Proc. CHI '16, ACM (2016), 2869--2881. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Hong, J., Heo, S., Isokoski, P., and Lee, G. Splitboard: A simple split soft keyboard for wristwatch-sized touch screens. In Proc. CHI '15, ACM (2015), 1233--1236. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Hsieh, Y.-T., Jylhä, A., Orso, V., Gamberini, L., and Jacucci, G. Designing a willing-to-use-in-public hand gestural interaction technique for smart glasses. In Proc. CHI '16, ACM (2016), 4203--1215. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Kolly, S. M., Wattenhofer, R., and Welten, S. A personal touch: Recognizing users based on touch screen behavior. In Proc. PhoneSense '12, ACM (2012), 1:1--1:5. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Li, F. C. Y., Guy, R. T., Yatani, K., and Truong, K. N. The 1line keyboard: A qwerty layout in a single line. In Proc. UIST '11, ACM (2011), 461--470. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Lyons, K., Plaisted, D., and Starner, T. Expert chording text entry on the twiddler one-handed keyboard. In Proc. ISWC04, vol. 1, IEEE (2004), 94--101. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. MacKenzie, I. S., and Soukoreff, R. W. Phrase sets for evaluating text entry techniques. In Proc. CHIEA'03, ACM (2003), 754--755. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. MacKenzie, I. S., and Tanaka-Ishii, K. Text entry systems: Mobility, accessibility, universality. Morgan Kaufmann, 2010.Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Markussen, A., Jakobsen, M. R., and Hornbæk, K. Vulture: A mid-air word-gesture keyboard. In Pro. CHI '14, ACM (2014), 1073--1082. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Ni, T., Bowman, D., and North, C. Airstroke: Bringing unistroke text entry to freehand gesture interfaces. In Proc. CHI'11, ACM (2011), 2473--2476. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Oney, S., Harrison, C., Ogan, A., and Wiese, J. Zoomboard: A diminutive qwerty soft keyboard using iterative zooming for ultra-small devices. In Proc. CHI'13, ACM (2013), 2799--2802. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Pizza, S., Brown, B., McMillan, D., and Lampinen, A. Smartwatch in vivo. In Proc. CHI'16, ACM (2016), 5456--5469.Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Rico, J., and Brewster, S. Usable gestures for mobile interfaces: Evaluating social acceptability. In Proc. CHI'10, ACM (2010), 887--896. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Rosenberg, R., and Slater, M. The chording glove: a glove-based text input device. IEEE Trans. Syst., Man, Cybern 29, 2 (1999), 186--191. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Shibata, T., Afergan, D., Kong, D., Yuksel, B. F., MacKenzie, I. S., and Jacob, R. J. Driftboard: A panning-based text entry technique for ultra-small touchscreens. In Proc. UIST'16, ACM (2016), 575--582. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Worldwide Wearables Market to Nearly Double by 2021, According to IDC. http://www.idc.com/getdoc.jsp?containerId=prUS42818517.Google ScholarGoogle Scholar
  25. Vertanen, K., Memmi, H., Emge, J., Reyal, S., and Kristensson, P. O. Velocitap: Investigating fast mobile text entry using sentence-based decoding of touchscreen keyboard input. In Proc. CHI'15, ACM (2015), 659--668. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Wang, C.-Y., Chu, W.-C., Chiu, P.-T., Hsiu, M.-C., Chiang, Y.-H., and Chen, M. Y. Palmtype: Using palms as keyboards for smart glasses. In Proc. MobileHCI'15, ACM (2015), 153--160. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Yi, X., Yu, C., Xu, W., Bi, X., and Shi, Y. Compass: Rotational keyboard on non-touch smartwatches. In Proc. CHI'17, ACM (2017), 705--715. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Yi, X., Yu, C., Zhang, M., Gao, S., Sun, K., and Shi, Y. Atk: Enabling ten-finger freehand typing in air based on 3d hand tracking data. In Proc. UIST'15, ACM (2015), 539--548. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Yu, C., Sun, K., Zhong, M., Li, X., Zhao, P., and Shi, Y. One-dimensional handwriting: Inputting letters and words on smart glasses. In Proc. CHI'16, ACM (2016), 71--82. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Typing on a Smartwatch for Smart Glasses

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      ISS '17: Proceedings of the 2017 ACM International Conference on Interactive Surfaces and Spaces
      October 2017
      504 pages
      ISBN:9781450346917
      DOI:10.1145/3132272

      Copyright © 2017 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 17 October 2017

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • demonstration
      • Research
      • Refereed limited

      Acceptance Rates

      ISS '17 Paper Acceptance Rate32of119submissions,27%Overall Acceptance Rate147of533submissions,28%

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader