skip to main content
10.1145/3139958.3140020acmconferencesArticle/Chapter ViewAbstractPublication PagesgisConference Proceedingsconference-collections
research-article

A PostGIS extension to support advanced spatial data types and integrity constraints

Authors Info & Claims
Published:07 November 2017Publication History

ABSTRACT

Geometric primitives defined by OGC and ISO standards, implemented in most modern spatially-enabled database management systems (DBMS), are unable to capture the semantics of richer representation types, as found in current geographic data models. Moreover, relational DBMSs do not directly extend referential integrity mechanisms to cover spatial relationships and to support spatial integrity constraints. Rather, they usually assume that all spatial integrity checking will be carried out by the application, during the data entry process. This is not practical if the DBMS supports many applications, and can lead to redundant and inconsistent work. This paper presents AST-PostGIS, an extension for PostgreSQL/PostGIS that incorporates advanced spatial data types and implements spatial integrity constraints. The extension reduces the distance between the conceptual and the physical designs of spatial databases, by providing richer representations for geo-object and geo-field geometries. It also offers procedures to assert the consistency of spatial relationships during data updates. Such procedures can also be used before enforcing spatial integrity constraints for the first time. We illustrate the use of AST-PostGIS on an urban geographic database design problem, mapping its conceptual schema to the physical implementation in extended SQL.

References

  1. Serge Abiteboul and Richard Hull. 1987. IFO: a formal semantic database model. TODS: ACM Transactions on Database Systems 12, 4 (1987), 525--565. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Graça Abrantes and Rogério Carapuça. 1994. Explicit representation of data that depend on topological relationships and control over data consistency. In Proceedings of the 5th European Conference and Exhibition on Geographical Information Systems, EGIS/MARI '94. Utrecht: EGIS Foundation, Paris, France, 869--877.Google ScholarGoogle Scholar
  3. David W. Adler. 2001. DB2 Spatial Extender -- spatial data within the RDBMS. In Proceedings of the 27th International Conference on Very Large Data Bases (VLDB '01). Morgan Kaufmann Publishers Inc., Roma, Italy, 687--690. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Alastair Aitchison. 2009. Beginning Spatial with SQL Server 2008. Apress. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Yvan Bédard, Claude Caron, Zakaria Maamar, Bernard Moulin, and Denis Vallière. 1996. Adapting data models for the design of spatio-temporal databases. Computers, Environment and Urban Systems 20, 1 (1996), 19--41.Google ScholarGoogle ScholarCross RefCross Ref
  6. Grady Booch, James Rumbaugh, and Ivar Jacobson. 2005. The Unified Modeling Language User Guide (2nd ed.). Addison-Wesley Professional. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Karla A. V. Borges, Clodoveu A. Davis Jr., and Alberto H. F. Laender. 2001. OMT-G: an object-oriented data model for geographic applications. GeoInformatica 5, 3 (2001), 221--260. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Karla A. V. Borges, Clodoveu A. Davis Jr., and Alberto H. F. Laender. 2002. Integrity Constraints in Spatial Databases. In Database Integrity: Challenges and Solutions, Jorge Horacio Doorn and Laura C. Rivero (Eds.). Idea Group, Chapter 5, 144--171. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Karla A. V. Borges, Clodoveu A. Davis Jr., and Alberto H. F. Laender. 2005. Modelagem conceitual de dados geográficos. In Banco de dados geográficos, Marco Antonio Casanova, Gilberto Câmara, Clodoveu A. Davis Jr., Lúbia Vinhas, and Gilberto Ribeiro Queiroz (Eds.). MundoGEO, Chapter 3, 93--146.Google ScholarGoogle Scholar
  10. Peter Pin-Shan Chen. 1976. The entity-relationship model -- toward a unified view of data. TODS: ACM Transactions on Database Systems 1, 1 (1976), 9--36. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Eliseo Clementini, Paolino Di Felice, and Peter Van Oosterom. 1993. A Small Set of Formal Topological Relationships Suitable for End-User Interaction. In Advances in Spatial Databases: 3rd International Symposium, SSD '93 (Lecture Notes in Computer Science), Vol. 692. Springer, Singapore, 277--295. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Clodoveu A. Davis Jr., Karla A. V. Borges, and Alberto H. F. Laender. 2001. Restrições de integridade em bancos de dados geográficos. In Proceedings of the 3rd Brazilian Workshop on GeoInformatics, GEOINFO 2001. Instituto Nacional de Pesquisas Espaciais (INPE), Rio de Janeiro, Brazil, 63--70.Google ScholarGoogle Scholar
  13. Clodoveu A. Davis Jr., Karla A. V. Borges, and Alberto H. F. Laender. 2005. Deriving Spatial Integrity Constraints from Geographic Application Schemas. In Encyclopedia of Database Technologies and Applications, Laura C. Rivero, Jorge Horacio Doorn, and Viviana E. Ferraggine (Eds.). Idea Group, 176--183.Google ScholarGoogle Scholar
  14. Yi Fang, Marc Friedman, Giri Nair, Michael Rys, and Ana-Elisa Schmid. 2008. Spatial indexing in Microsoft SQL Server 2008. In Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data (SIGMOD '08). ACM, New York, USA, 1207--1216. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Vincenzo Del Fatto, Vincenzo Deufemia, Luca Paolino, and Sara Tumiati. 2015. WiSPY: A Tool for Visual Specification and Verification of Spatial Integrity Constraints. VLSS: Journal of Visual Languages and Sentient Systems 1 (2015), 39--48.Google ScholarGoogle Scholar
  16. Andrew U. Frank and David M. Mark. 1991. Language issues for geographical information systems. In Geographical Information Systems: Principles and Applications, D. J. Maguire, M. F. Goodchild, and D. W. Rhind (Eds.). Vol. 1. Longman Scientific and Technical, Chapter 11, 147--163.Google ScholarGoogle Scholar
  17. André C. Hora, Clodoveu A. Davis Jr., and Mirella M. Moro. 2010. Generating XML/GML schemas from geographic conceptual schemas. In AMW 2010, Proceedings of the 4th Alberto Mendelzon International Workshop on Foundations of Data Management (CEUR Workshop Proceedings), Vol. 619. CEUR-WS.org, Buenos Aires, Argentina.Google ScholarGoogle Scholar
  18. ISO/IEC 13249-3 2016. Information technology -- Database languages -- SQL multimedia and application packages -- Part 3: Spatial. International Standard ISO/IEC 13249-3:2016(E). International Organization for Standardization, Geneva, Switzerland. https://www.iso.org/standard/60343.htmlGoogle ScholarGoogle Scholar
  19. Karen K. Kemp. 1992. Environmental modeling with GIS: a strategy for dealing with spatial continuity. Ph.D. Dissertation. University of California, USA.Google ScholarGoogle Scholar
  20. Georg Kosters, Bernd-Uwe Pagel, and Hans-Werner Six. 1997. GIS-application development with GeoOOA. IJGIS 11, 4 (1997), 307--335.Google ScholarGoogle ScholarCross RefCross Ref
  21. Jugurta Lisboa Filho and Cirano Iochpe. 1999. Specifying Analysis Patterns for Geographic Databases on the Basis of a Conceptual Framework. In Proceedings of the 7th ACM International Symposium on Advances in Geographic Information Systems, GIS '99. ACM, Kansas City, USA, 7--13. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Jugurta Lisboa Filho, Mauricio Fidelis Rodrigues Jr., Jaudete Daltio, and Victor de Freitas Sodré. 2004. ArgoCASEGEO -- an open source CASE tool for Geographic Information Systems modeling using the UML-GeoFrame model. In Proceedings of the 7th International Conference on Information Systems Implementation and Modeling, ISIM '04. Ostrava, Czech Republic, 29--36.Google ScholarGoogle Scholar
  23. Jugurta Lisboa Filho, Victor Freitas Sodré, Jaudete Daltio, Maurício Fidelis Rodrigues Jr., and Valério Moysés Vilela. 2004. A CASE Tool for Geographic Database Design Supporting Analysis Patterns. In Proceedings of Conceptual Modeling for Advanced Application Domains, ER 2004 Workshops CoMoGIS, COMWIM, ECDM, CoMoA, DGOV, and ECOMO (Lecture Notes in Computer Science), Vol. 3289. Springer, Shanghai, China, 43--54.Google ScholarGoogle Scholar
  24. Luís Eduardo Oliveira Lizardo and Clodoveu A. Davis Jr. 2014. OMT-G Designer: a Web tool for modeling geographic databases in OMT-G. In Advances in Conceptual Modeling: 33rd International Conference on Conceptual Modeling, ER 2014 (Lecture Notes in Computer Science), Vol. 8823. Springer, Atlanta, USA, 228--233.Google ScholarGoogle Scholar
  25. Jim Melton and Andrew Eisenberg. 2001. SQL multimedia and application packages (SQL/MM). ACM SIGMOD Record 30, 4 (2001), 97--102. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Bruce Momjian. 2001. PostgreSQL: Introduction and Concepts. Addison-Wesley. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Regina O. Obe and Leo S. Hsu. 2015. PostGIS in action (2nd ed.). Manning. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. OGC 06-103r4 2011. OpenGIS Implementation Standard for Geographic information - Simple feature access -- Part 1: Common architecture. OpenGIS Implementation Standard OGC 06-103r4. Open Geospatial Consortium Inc.Google ScholarGoogle Scholar
  29. OGC 06-104r4 2010. OpenGIS Implementation Standard for Geographic information - Simple feature access -- Part 2: SQL option. OpenGIS Implementation Standard OGC 06-104r4. Open Geospatial Consortium Inc.Google ScholarGoogle Scholar
  30. Juliano Lopes Oliveira, Fátima Pires, and Claudia Bauzer Medeiros. 1997. An environment for modeling and design of geographic applications. GeoInformatica 1, 1 (1997), 29--58. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Oracle 2017. Spatial and Graph Analytics with Oracle Database 12c Release 2. Technical White Paper. Oracle Corporation.Google ScholarGoogle Scholar
  32. Adam Piórkowski. 2011. MySQL Spatial and PostGIS -- implementations of spatial data standards. EJPAU 14, 1 (2011), 1--8.Google ScholarGoogle Scholar
  33. James Rumbaugh, Michael Blaha, William Premerlani, Frederick Eddy, William E. Lorensen, et al. 1991. Object-Oriented Modeling and Design. Prentice Hall. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Shashi Shekhar, Mark Coyle, Brajesh Goyal, Duen-Ren Liu, and Shyamsundar Sarkar. 1997. Data models in geographic information systems. Commun. ACM 40, 4 (1997), 103--111. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Knut Stolze. 2003. SQL/MM Spatial -- The Standard to Manage Spatial Data in a Relational Database System. In Tagungsband der 10. BTW-Konferenz, BTW 2003 (LNI), Vol. 26. GI, Leipzig, Germany, 247--264.Google ScholarGoogle Scholar
  36. Michael Widenius and Davis Axmark. 2002. MySQL Reference Manual: Documentation from the Source. O'Reilly Media. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Michael F. Worboys, Hilary M. Hearnshaw, and David J. Maguire. 1990. Object-oriented data modelling for spatial databases. IJGIS 4, 4 (1990), 369--383.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. A PostGIS extension to support advanced spatial data types and integrity constraints

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Conferences
        SIGSPATIAL '17: Proceedings of the 25th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems
        November 2017
        677 pages
        ISBN:9781450354905
        DOI:10.1145/3139958

        Copyright © 2017 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 7 November 2017

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article
        • Research
        • Refereed limited

        Acceptance Rates

        SIGSPATIAL '17 Paper Acceptance Rate39of193submissions,20%Overall Acceptance Rate220of1,116submissions,20%

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader