skip to main content
10.1145/3151759.3151823acmotherconferencesArticle/Chapter ViewAbstractPublication PagesiiwasConference Proceedingsconference-collections
short-paper

QSMatching: an approach to calculate similarity between questionnaires

Published: 04 December 2017 Publication History

Abstract

The creation of questionnaires for use in interviews, statistical surveys or scientific research is not a trivial task. Poorly elaborated worked out questions can lead to answers with meaningless or naive interpretations. Therefore, it may be interesting to reuse, partially or totally, questionnaires already created with the same purpose. In this paper we propose the QSMatching approach to calculate the similarity between questionnaires and consequently to obtain a ranking of questionnaires according to the user's query. In order to verify the effectiveness of the proposed approach, an experiment was carried out comparing QSMatching and the vector model. The result of the analysis of the experiment shows that the QSMatching is more effective than the vector model for questionnaires retrieval.

References

[1]
Modelos de questionarios. https://www.survio.com/br/modelos-de-pesquisa. (Accessed: 01-2017), 2017.
[2]
Y. BAEZA and B. Ribeiro-Neto. Modern Information Retrieval-the concepts and technology behind search. Pearson, 2011.
[3]
R.-C. Chen, D. Spina, W. B. Croft, M. Sanderson, and F. Scholer. Harnessing semantics for answer sentence retrieval. In Proceedings of the Eighth Workshop on Exploiting Semantic Annotations in Information Retrieval, pages 21--27. ACM, 2015.
[4]
L. P. Claudino, M. B. Nunes, and F. d. Silva. Finanças pessoais: um estudo de caso com servidores públicos. Anais do SEMEAD-Seminários em Administração, São Paulo, SP, Brasil, 12, 2009.
[5]
D. H. Dalip, M. A. Gonçalves, M. Cristo, and P. Calado. Exploiting user feedback to learn to rank answers in q&a forums: a case study with stack overflow. In Proceedings of the 36th international ACM SIGIR conference on Research and development in information retrieval, pages 543--552. ACM, 2013.
[6]
A. Grappy, B. Grau, M.-H. Falco, A.-L. Ligozat, I. Robba, and A. Vilnat. Selecting answers to questions from web documents by a robust validation process. In Web Intelligence and Intelligent Agent Technology (WI-IAT), 2011 IEEE/WIC/ACM International Conference on, volume 1, pages 55--62. IEEE, 2011.
[7]
E. H. Hovy, L. Gerber, U. Hermjakob, M. Junk, and C.-Y. Lin. Question answering in webclopedia. In TREC, volume 52, pages 53--56, 2000.
[8]
S. N. Kim, L. Cavedon, and T. Baldwin. Classifying dialogue acts in one-on-one live chats. In Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing, pages 862--871. Association for Computational Linguistics, 2010.
[9]
N. N. Knupfer and H. McLellan. DESCRIPTIVE RESEARCH METHODOLOGIES. In D. H. Jonassen (Ed.), Handbook of research for educational communications and technology (pp. 1196 -- 1212). New York: Macmillan, 1996.
[10]
E. M. Lakatos and M. d. A. Marconi. Fundamentos da metodologia científica. In Fundamentos da metodologia científica. Altas, 2010.
[11]
P. Molino and L. M. Aiello. Distributed representations for semantic matching in non-factoid question answering. In SMIR@ SIGIR, pages 38--45, 2014.
[12]
M. L. Patten. Questionnaire research: A practical guide. Routledge, 2016.
[13]
C. F. Picard. Graphs and questionnaires, volume 32. Elsevier, 1980.
[14]
W. Song, M. Feng, N. Gu, and L. Wenyin. Question similarity calculation for faq answering. In Semantics, Knowledge and Grid, Third International Conference on, pages 298--301. IEEE, 2007.
[15]
R. H. d. Souza and C. F. Dorneles. Analisando a eficácia do modelo vetorial de busca na ordenação de questionários. XIII Simpósio Brasileiro de Sistemas de Informação, June 2017.
[16]
L. M. Villar, A. J. d. Almeida, M. C. A. d. Lima, J. L. V. d. Almeida, L. F. B. d. Souza, and V. S. d. Paula. A percepção ambiental entre os habitantes da região noroeste do estado do rio de Janeiro. E. Anna Nery Revista Enfermagem, 12(2):285--290, 2008.
[17]
R. S. Waslawick. Metodologia de pesquisa para ciência da computação. Elsevier, Rio de Janeiro, 2014.
[18]
C. J. Willmott and K. Matsuura. Advantages of the mean absolute error (mae) over the root mean square error (rmse) in assessing average model performance. Climate research, 30(1):79--82, 2005.

Cited By

View all
  • (2019)Searching and ranking questionnairesProceedings of the ACM Symposium on Document Engineering 201910.1145/3342558.3345390(1-9)Online publication date: 23-Sep-2019
  • (2018)QSMatching vs Vector modelProceedings of the XIV Brazilian Symposium on Information Systems10.1145/3229345.3229374(1-8)Online publication date: 4-Jun-2018

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Other conferences
iiWAS '17: Proceedings of the 19th International Conference on Information Integration and Web-based Applications & Services
December 2017
609 pages
ISBN:9781450352994
DOI:10.1145/3151759
© 2017 Association for Computing Machinery. ACM acknowledges that this contribution was authored or co-authored by an employee, contractor or affiliate of a national government. As such, the Government retains a nonexclusive, royalty-free right to publish or reproduce this article, or to allow others to do so, for Government purposes only.

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 04 December 2017

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. approach
  2. questionnaire
  3. ranking
  4. similarity
  5. vector model

Qualifiers

  • Short-paper

Conference

iiWAS2017

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)7
  • Downloads (Last 6 weeks)0
Reflects downloads up to 05 Mar 2025

Other Metrics

Citations

Cited By

View all
  • (2019)Searching and ranking questionnairesProceedings of the ACM Symposium on Document Engineering 201910.1145/3342558.3345390(1-9)Online publication date: 23-Sep-2019
  • (2018)QSMatching vs Vector modelProceedings of the XIV Brazilian Symposium on Information Systems10.1145/3229345.3229374(1-8)Online publication date: 4-Jun-2018

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media