skip to main content
10.1145/3152341.3152345acmconferencesArticle/Chapter ViewAbstractPublication PagesgisConference Proceedingsconference-collections
research-article

SHE: Stepwise Heterogeneous Ensemble Method for Citywide Traffic Analysis

Authors Info & Claims
Published:07 November 2017Publication History

ABSTRACT

Sensored traffic data in modern cities have been collected and applied for various purposes in the domain of intelligent transportation systems (ITS). However, analyzing these traffic data often lacks in priori knowledge due to the dynamics of transportation systems, making it hard to cope with diverse scenarios with specific models. In view of the limitations of traditional approaches, in this paper, we propose the Stepwise Heterogeneous Ensemble (SHE) for citywide traffic analysis based on stacked generalization. We first prove SHE's effectiveness using error-ambiguity decomposition technique. Secondly we analyze the optimal linear combination of SHE and present the stepwise iterating strategy. We also demonstrate its validity based on Kullback-Leibler divergence analysis. Thirdly we integrate six classical approaches into SHE framework, including linear least squares regression (LLSR), autoregressive moving average (ARMA), historical mean (HM), artificial neural network (ANN), radical basis function neural network (RBFNN), support vector machine (SVM). We further compare SHE's performance with other four linear combination models, namely equal weights method (EW), optimal weights method (OW), minimum error method (ME) and minimum variance method (MV). A series of experiments are conducted with a real city traffic dataset in Beijing city. The results show that the proposed SHE method behaves more robust and precise than other six single methods. Moreover, this method also outperforms other four different combination strategies both in variance and bias. In addition, the SHE method provides an open-ending framework for citywide traffic analysis, which means any new promising models can be easily incorporated into it in the future.

References

  1. Fusco, G., Colombaroni, C., Isaenko, N. 2016. Short-term speed predictions exploiting big data on large urban road networks. TRANSPORT RES C-EMER, 73, 183--201.Google ScholarGoogle ScholarCross RefCross Ref
  2. Zheng, F., Van Zuylen, H. 2013. Urban link travel time estimation based on sparse probe vehicle data. TRANSPORT RES C-EMER, 31, 145--157.Google ScholarGoogle ScholarCross RefCross Ref
  3. Rajabzadeh, Y., Rezaie, A. H., Amindavar, H. 2017. Short-term traffic flow prediction using time-varying Vasicek model. TRANSPORT RES C-EMER, 74, 168--181.Google ScholarGoogle ScholarCross RefCross Ref
  4. Huang, Y., Zhao, L., Van Woensel, T., Gross, J. P. 2017. Time-dependent vehicle routing problem with path flexibility. TRANSPORT RES B-METH, 95, 169--195.Google ScholarGoogle ScholarCross RefCross Ref
  5. Liu, X., Liu, K., Li, M., Lu, F. 2017. A ST-CRF Map-Matching Method for Low-Frequency Floating Car Data. IEEE T INTELL TRANSP, 18(5), 1241--1254. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Ahmed, K., Abu-Lebdeh, G., Al-Omari, B. 2012. Estimation of delay induced by downstream operations at signalized intersections over extended control time. J TRANSP ENG-ASCE, 139(1), 8--19.Google ScholarGoogle ScholarCross RefCross Ref
  7. Zheng, Y. 2015. Trajectory data mining: an overview. ACM T INTEL SYST TEC, 6(3), 29 Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Ban, X., Herring, R., Hao, P., Bayen, A. 2009. Delay pattern estimation for signalized intersections using sampled travel times. TRANSPORT RES REC, 2130, 109--119.Google ScholarGoogle ScholarCross RefCross Ref
  9. Zhang, Y., Liu, Y. 2011. Analysis of peak and non-peak traffic forecasts using combined models. J ADV TRANSPORT, 45(1), 21--37.Google ScholarGoogle ScholarCross RefCross Ref
  10. Ambühl, L., Menendez, M. 2016. Data fusion algorithm for macroscopic fundamental diagram estimation. TRANSPORT RES C-EMER, 71, 184--197..Google ScholarGoogle ScholarCross RefCross Ref
  11. Long, J., Gao, Z., Zhao, X., Lian, A., Orenstein, P. 2011. Urban traffic jam simulation based on the cell transmission model. NETW SPAT ECON, 11(1), 43--64.Google ScholarGoogle ScholarCross RefCross Ref
  12. Hibon, M., Evgeniou, T. 2005. To combine or not to combine: selecting among forecasts and their combinations. INT J FORECASTING, 21(1), 15--24.Google ScholarGoogle ScholarCross RefCross Ref
  13. Wolpert, D. H. 1992. Stacked generalization. NEURAL NETWORKS, 5(2), 241--259. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Krogh, A., Vedelsby, J. 1995. Neural network ensembles, cross validation, and active learning. NIPS, 7, 231--238. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Galas, D. J., Dewey, T. G., Kunert-Graf, J., Sakhanenko, N. A. 2017. Expansion of the Kullback-Leibler Divergence, and a new class of information metrics. arXiv preprint arXiv:1702.00033.Google ScholarGoogle Scholar
  16. João, M.M, Carlos, S., Alípio, M.J. and Jorge, F. 2012. Ensemble approaches for regression: A survey. ACM Comput. Surv. 45, 1. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Zhou, Z.H. 2012. Ensemble Methods: Foundations and Algorithms, Boca Raton, FL: Chapman & Hall/CRC, 12--31. Google ScholarGoogle ScholarCross RefCross Ref
  18. Zhang, M. L., Zhou, Z. H. 2013. Exploiting unlabeled data to enhance ensemble diversity. DATA MIN KNOWL DISC, 26(1), 98--129. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Krawczyk, B., Minku, L. L., Gama, J., Stefanowski, J., Woźniak, M. 2017. Ensemble learning for data stream analysis: a survey. INFORM FUSION, 37, 132--156. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Branco, P., Torgo, L., Ribeiro, R. P. 2016. A survey of predictive modeling on imbalanced domains. ACM Comput. Surv, 49(2), 31. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Chen, Y., Wong, M. L., Li, H. 2014. Applying Ant Colony Optimization to configuring stacking ensembles for data mining. EXPERT SYST APPL, 41(6), 2688--2702. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. King, M. A., Abrahams, A. S., Ragsdale, C. T. 2014. Ensemble methods for advanced skier days prediction. EXPERT SYST APPL, 41(4), 1176--1188. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Andreas Töscher, Michael Jahrer, Robert M. Bell, The BigChaos Solution to the Netflix Grand Prize, Report from the Netflix Prize Winners, 2009.Google ScholarGoogle Scholar
  24. Marc Claesen, Frank De Smet, Johan A.K. Suykens, Bart De Moor. 2014. EnsembleSVM: A Library for Ensemble Learning Using Support Vector Machines. J MACH LEARN RES. 15, 141--145. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Heitor Murilo Gomes, Jean Paul Barddal, Fabrício Enembreck, Albert Bifet. A Survey on Ensemble Learning for Data Stream Classification. ACM Comput. Surv. 50(2), 23. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Bartosz Krawczyk, Leandro L. Minkub, João Gamac, Jerzy Stefanowskid, Michał Woźniake. 2017. Ensemble learning for data stream analysis: A survey. INFORM FUSION, 37, 132--156. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Robert E. Schapire. 1990. The strength of weak learnability. MACH LEARN. 5(2), 197--227. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Nascimento D.S.C., Coelho A.L.V. 2009. Ensembling Heterogeneous Learning Models with Boosting. In: Leung C.S., Lee M., Chan J.H. (eds) Neural Information Processing. ICONIP 2009. LNCS, vol 5863. Springer, Berlin, Heidelberg. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Witten, I. H., Frank, E., et al. 2011. Data mining: Practical machine learning tools and techniques. New York: Elsevier. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Jose V R R, Winkler R L. 2008. Simple robust averages of fore-casts: some empirical results. Int J Forecast, 24(1), 163--169.Google ScholarGoogle ScholarCross RefCross Ref
  31. Armstrong J S. 2001. Principles of forecasting: a handbook for researchers and practitioners. Academic Publishers, Norwell, MA.Google ScholarGoogle Scholar
  32. Nascimento D.S.C., Coelho A.L.V. 2009. Ensembling Heterogeneous Learning Models with Boosting. In: Leung C.S., Lee M., Chan J.H. (eds) Neural Information Processing. ICONIP 2009. Lecture Notes in Computer Science, 5863. Springer, Berlin, Heidelberg. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Liu, X., Lu, F., Zhang, H. and Qiu P. 2013. Intersection delay estimation from floating car data via principal curves: a case study on Beijing's road network. Frontiers of Earth Science, 7(2), 206--216.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. SHE: Stepwise Heterogeneous Ensemble Method for Citywide Traffic Analysis

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      PredictGIS'17: Proceedings of the 1st ACM SIGSPATIAL Workshop on Prediction of Human Mobility
      November 2017
      51 pages
      ISBN:9781450355018
      DOI:10.1145/3152341

      Copyright © 2017 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 7 November 2017

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article
      • Research
      • Refereed limited
    • Article Metrics

      • Downloads (Last 12 months)1
      • Downloads (Last 6 weeks)0

      Other Metrics

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader