skip to main content
10.1145/3152434.3152440acmconferencesArticle/Chapter ViewAbstractPublication PagescommConference Proceedingsconference-collections
research-article

How will Deep Learning Change Internet Video Delivery?

Published:30 November 2017Publication History
First page image
Skip Supplemental Material Section

Supplemental Material

yeo.mp4

mp4

939.3 MB

References

  1. 2016. ARRIS Gives Us a Hint of the Bandwidth Requirements for VR. http://www.onlinereporter.com/2016/06/17/arris-gives-us-hint-bandwidth-requirements-vr/. (June 2016).Google ScholarGoogle Scholar
  2. V. K. Adhikari, Y. Guo, F. Hao, V. Hilt, Z. L. Zhang, M. Varvello, and M. Steiner. 2015. Measurement Study of Netflix, Hulu, and a Tale of Three CDNs. IEEE/ACM Transactions on Networking 23, 6 (Dec 2015), 1984--1997. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Saamer Akhshabi, Ali C Begen, and Constantine Dovrolis. 2011. An experimental evaluation of rate-adaptation algorithms in adaptive streaming over HTTP. In Proc. ACM conference on Multimedia systems. ACM, 157--168. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Sean Bell and Kavita Bala. 2015. Learning visual similarity for product design with convolutional neural networks. ACM Transactions on Graphics 34, 4 (2015), 98. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Yoshua Bengio et al. 2009. Learning deep architectures for AI. Foundations and trends in Machine Learning 2, 1 (2009), 1--127. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Olympic Channel. 2012. Basketball - USA vs Spain - Men's Gold Final | London 2012 Olympic Games. https://www.youtube.com/watch?v=19wUr-CK1Y4&t=8394s/. (Aug. 2012).Google ScholarGoogle Scholar
  7. Olympic Channel. 2012. Usain Bolt Wins 200m Final | London 2012 Olympic Games. https://www.youtube.com/watch?v=LWZQAVtkMBo. (Aug. 2012).Google ScholarGoogle Scholar
  8. Olympic Channel. 2012. Usain Bolt Wins Olympic 100m Gold. https://www.youtube.com/watch?v=2O7K-8G2nwU. (Aug. 2012).Google ScholarGoogle Scholar
  9. Cisco. 2017. Cisco Visual Networking Index: Forecast and Methodology, 2016-2021. http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/complete-white-paper-c11-481360.pdf. (July 2017).Google ScholarGoogle Scholar
  10. Team Coco. 2012. Monologue 02/15/12 - CONAN on TBS. https://www.youtube.com/watch?v=DSzCNC4ypiA&list=PLXi05HpOWLE6eLdYEpYooYoNtO4DZ-w&index=3. (Feb. 2012).Google ScholarGoogle Scholar
  11. Team Coco. 2012. Monologue 03/19/12 - CONAN on TBS. https://www.youtube.com/watch?v=rULPBI9O8d4&index=4&list=PLXi05HpOWLE6eLdYEpYooYoNtO4DZ-w. (Feb. 2012).Google ScholarGoogle Scholar
  12. Chao Dong, Chen Change Loy, Kaiming He, and Xiaoou Tang. 2014. Learning a deep convolutional network for image super-resolution. In European Conference on Computer Vision. Springer, 184--199.Google ScholarGoogle ScholarCross RefCross Ref
  13. Chao Dong, Chen Change Loy, and Xiaoou Tang. 2016. Accelerating the super-resolution convolutional neural network. In European Conference on Computer Vision. Springer, 391--407.Google ScholarGoogle ScholarCross RefCross Ref
  14. K. Fatahalian. 2016. The Rise of Mobile Visual Computing Systems. IEEE Pervasive Computing 15, 2 (Apr 2016), 8--13. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. F. H. P. Fitzek and M. Reisslein. 2001. MPEG-4 and H.263 video traces for network performance evaluation. IEEE Network 15, 6 (Nov 2001), 40--54. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. MATTIAS Fridström. 2016. The bandwidth problem: 5 issues the VR industry must resolve. https://venturebeat.com/2017/05/06/the-bandwidth-problem-5-issues-the-vr-industry-must-resolve/. (May 2016).Google ScholarGoogle Scholar
  17. Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative adversarial nets. In Proc. NIPS. 2672--2680. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Fred Halsall. 2000. Multimedia Communications (1st ed.). Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Te-Yuan Huang, Nikhil Handigol, Brandon Heller, Nick McKeown, and Ramesh Johari. 2012. Confused, Timid, and Unstable: Picking a Video Streaming Rate is Hard. In Proc. IMC. 225--238. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. 2016. Image-to-image translation with conditional adversarial networks. arXiv preprint arXiv:1611.07004 (2016).Google ScholarGoogle Scholar
  21. Junchen Jiang, Vyas Sekar, and Hui Zhang. 2012. Improving Fairness, Efficiency, and Stability in HTTP-based Adaptive Video Streaming with FESTIVE. In Proc. ACM CoNEXT. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Junchen Jiang, Shijie Sun, Vyas Sekar, and Hui Zhang. 2017. Pytheas: Enabling Data-Driven Quality of Experience Optimization Using Group-Based Exploration-Exploitation. In Proc. USENIX NSDI. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Jiwon Kim, Jung Kwon Lee, and Kyoung Mu Lee. 2016. Accurate image super-resolution using very deep convolutional networks. In Proc. IEEE CVPR. 1646--1654.Google ScholarGoogle ScholarCross RefCross Ref
  24. Jiwon Kim, Jung Kwon Lee, and Kyoung Mu Lee. 2016. Deeply-recursive convolutional network for image super-resolution. In Proc. IEEE CVPR. 1637--1645.Google ScholarGoogle ScholarCross RefCross Ref
  25. Wei-Sheng Lai, Jia-Bin Huang, Narendra Ahuja, and Ming-Hsuan Yang. 2017. Deep Laplacian Pyramid Networks for Fast and Accurate Super-Resolution. arXiv preprint arXiv:1704.03915 (2017).Google ScholarGoogle Scholar
  26. Hongqiang Harry Liu, Ye Wang, Yang Richard Yang, Hao Wang, and Chen Tian. 2012. Optimizing cost and performance for content multi-homing. In Proc. ACM SIGCOMM. 371--382. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Xi Liu, Florin Dobrian, Henry Milner, Junchen Jiang, Vyas Sekar, Ion Stoica, and Hui Zhang. 2012. A case for a coordinated internet video control plane. In Proc. ACM SIGCOMM. 359--370. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. William Lotter, Gabriel Kreiman, and David Cox. 2016. Deep predictive coding networks for video prediction and unsupervised learning. arXiv preprint arXiv:1605.08104 (2016).Google ScholarGoogle Scholar
  29. Hongzi Mao, Ravi Netravali, and Mohammad Alizadeh. 2017. Neural Adaptive Video Streaming with Pensieve. In Proc. ACM SIGCOMM. ACM, New York, NY, USA, 197--210. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Michael Mathieu, Camille Couprie, and Yann LeCun. 2015. Deep multi-scale video prediction beyond mean square error. arXiv preprint arXiv:1511.05440 (2015).Google ScholarGoogle Scholar
  31. Khalid Moammer. 2015. Nvidia: Pascal Is 10x Faster Than Maxwell, Launching in 2016 On 16nm - Features 3D Memory, NV-Link and Mixed Precision. http://wccftech.com/nvidia-pascal-gpu-gtc-2015/. (March 2015).Google ScholarGoogle Scholar
  32. Tim Moynihan. 2014. WTF Just Happened: My New HDTV Makes Movies Look Unnaturally Smooth. https://www.wired.com/2014/08/wtf-just-happened-soap-opera-effect/. (Aug. 2014).Google ScholarGoogle Scholar
  33. Matthew K. Mukerjee, David Naylor, Junchen Jiang, Dongsu Han, Srinivasan Seshan, and Hui Zhang. 2015. Practical, Real-time Centralized Control for CDN-based Live Video Delivery. In Proc. ACM SIGCOMM. 311--324. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Netflix. {n. d.}. Netflix & Binge: New Binge Scale Reveals TV Series We Devour and Those We Savor. https://media.netflix.com/en/press-releases/netflix-binge-new-binge-scale-reveals-tv-series-we-devour-and-those-we-savor-1. ({n. d.}). Last accessed: July 2017.Google ScholarGoogle Scholar
  35. Erik Nygren, Ramesh K. Sitaraman, and Jennifer Sun. 2010. The Akamai Network: A Platform for High-performance Internet Applications. SIGOPS Oper. Syst. Rev. 44, 3 (Aug. 2010), 2--19. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Ooyala. {n. d.}. Ooyala GLOBAL VIDEO INDEX Q1 2017. http://go.ooyala.com/rs/447-EQK-225/images/Ooyala-Global-Video-Index-Q1-2017.pdf. ({n. d.}). Last accessed: July 2017.Google ScholarGoogle Scholar
  37. Roger Pantos and William May. 2017. HTTP Live Streaming. Internet-Draft draft-pantos-http-live-streaming-23. IETF Secretariat. http://www.ietf.org/internet-drafts/draft-pantos-http-live-streaming-23.txtGoogle ScholarGoogle Scholar
  38. Adrian Pennington. 2017. The realities of making VR and AR streaming a reality. https://knect365.com/media-networks/article/98d3564c-2e6b-43f7-8728-dda3038f818a/the-realities-of-making-vr-and-ar-streaming-a-reality. (July 2017).Google ScholarGoogle Scholar
  39. MarcAurelio Ranzato, Arthur Szlam, Joan Bruna, Michael Mathieu, Ronan Collobert, and Sumit Chopra. 2014. Video (language) modeling: a baseline for generative models of natural videos. arXiv preprint arXiv:1412.6604 (2014).Google ScholarGoogle Scholar
  40. Reuters. {n. d.}. How Network TV Figured Out Binge-Watching. http://fortune.com/2016/03/11/netflix-changing-game-network-tv/. ({n. d.}). Last accessed: July 2017.Google ScholarGoogle Scholar
  41. Sandvine. {n. d.}. 2016 Global Internet Phenomena Report: North America and Latin America. https://www.sandvine.com/downloads/general/global-internet-phenomena/2016/global-internet-phenomena-report-latin-america-and-north-america.pdf. ({n. d.}). Last accessed: July 2017.Google ScholarGoogle Scholar
  42. Wenzhe Shi, Jose Caballero, Ferenc Huszar, Johannes Totz, Andrew P. Aitken, Rob Bishop, Daniel Rueckert, and Zehan Wang. 2016. RealTime Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network. In Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Google ScholarGoogle ScholarCross RefCross Ref
  43. Ying Tai, Jian Yang, and Xiaoming Liu. 2017. Image Super-Resolution via Deep Recursive Residual Network. In Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Google ScholarGoogle ScholarCross RefCross Ref
  44. Lucas Theis, Wenzhe Shi, Andrew Cunningham, and Ferenc Huszár. 2017. Lossy image compression with compressive autoencoders. arXiv preprint arXiv:1703.00395 (2017).Google ScholarGoogle Scholar
  45. Valley Voices. 2017. Why The Internet Pipes Will Burst When Virtual Reality Takes Off. https://www.forbes.com/sites/valleyvoices/2016/02/09/why-the-internet-pipes-will-burst-if-virtual-reality-takes-off/#7049e4583858. (July 2017).Google ScholarGoogle Scholar
  46. Jiang Wang, Yang Song, Thomas Leung, Chuck Rosenberg, Jingbin Wang, James Philbin, Bo Chen, and Ying Wu. 2014. Learning fine-grained image similarity with deep ranking. In Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 1386--1393. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. John Watkinson. 2004. The MPEG Handbook: MPEG-1, MPEG-2, MPEG-4. Taylor & Francis. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Patrick Wendell, Joe Wenjie Jiang, Michael J. Freedman, and Jennifer Rexford. 2010. DONAR: Decentralized Server Selection for Cloud Services. In Proc. ACM SIGCOMM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. Sergey Zagoruyko and Nikos Komodakis. 2015. Learning to compare image patches via convolutional neural networks. In Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 4353--4361.Google ScholarGoogle ScholarCross RefCross Ref
  50. Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy McCauley, Michael J Franklin, Scott Shenker, and Ion Stoica. 2012. Resilient distributed datasets: A fault-tolerant abstraction for in-memory cluster computing. In Proc. USENIX NSDI. Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. Zhang, Zhengdong and Sze, Vivienne. 2017. FAST: A Framework to Accelerate Super-Resolution Processing on Compressed Videos. In CVPR Workshop on New Trends in Image Restoration and Enhancement.Google ScholarGoogle Scholar
  52. T. Zinner, O. Hohlfeld, O. Abboud, and T. Hossfeld. 2010. Impact of frame rate and resolution on objective QoE metrics. In Proc. International Workshop on Quality of Multimedia Experience (QoMEX). 29--34.Google ScholarGoogle Scholar

Index Terms

  1. How will Deep Learning Change Internet Video Delivery?
        Index terms have been assigned to the content through auto-classification.

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in
        • Published in

          cover image ACM Conferences
          HotNets '17: Proceedings of the 16th ACM Workshop on Hot Topics in Networks
          November 2017
          206 pages
          ISBN:9781450355698
          DOI:10.1145/3152434

          Copyright © 2017 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 30 November 2017

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article
          • Research
          • Refereed limited

          Acceptance Rates

          HotNets '17 Paper Acceptance Rate28of124submissions,23%Overall Acceptance Rate110of460submissions,24%

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader