skip to main content
10.1145/3152434.3152440acmconferencesArticle/Chapter ViewAbstractPublication PagescommConference Proceedingsconference-collections
research-article

How will Deep Learning Change Internet Video Delivery?

Published: 30 November 2017 Publication History
First page of PDF

Supplementary Material

MP4 File (yeo.mp4)

References

[1]
2016. ARRIS Gives Us a Hint of the Bandwidth Requirements for VR. http://www.onlinereporter.com/2016/06/17/arris-gives-us-hint-bandwidth-requirements-vr/. (June 2016).
[2]
V. K. Adhikari, Y. Guo, F. Hao, V. Hilt, Z. L. Zhang, M. Varvello, and M. Steiner. 2015. Measurement Study of Netflix, Hulu, and a Tale of Three CDNs. IEEE/ACM Transactions on Networking 23, 6 (Dec 2015), 1984--1997.
[3]
Saamer Akhshabi, Ali C Begen, and Constantine Dovrolis. 2011. An experimental evaluation of rate-adaptation algorithms in adaptive streaming over HTTP. In Proc. ACM conference on Multimedia systems. ACM, 157--168.
[4]
Sean Bell and Kavita Bala. 2015. Learning visual similarity for product design with convolutional neural networks. ACM Transactions on Graphics 34, 4 (2015), 98.
[5]
Yoshua Bengio et al. 2009. Learning deep architectures for AI. Foundations and trends in Machine Learning 2, 1 (2009), 1--127.
[6]
Olympic Channel. 2012. Basketball - USA vs Spain - Men's Gold Final | London 2012 Olympic Games. https://www.youtube.com/watch?v=19wUr-CK1Y4&t=8394s/. (Aug. 2012).
[7]
Olympic Channel. 2012. Usain Bolt Wins 200m Final | London 2012 Olympic Games. https://www.youtube.com/watch?v=LWZQAVtkMBo. (Aug. 2012).
[8]
Olympic Channel. 2012. Usain Bolt Wins Olympic 100m Gold. https://www.youtube.com/watch?v=2O7K-8G2nwU. (Aug. 2012).
[9]
Cisco. 2017. Cisco Visual Networking Index: Forecast and Methodology, 2016-2021. http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/complete-white-paper-c11-481360.pdf. (July 2017).
[10]
Team Coco. 2012. Monologue 02/15/12 - CONAN on TBS. https://www.youtube.com/watch?v=DSzCNC4ypiA&list=PLXi05HpOWLE6eLdYEpYooYoNtO4DZ-w&index=3. (Feb. 2012).
[11]
Team Coco. 2012. Monologue 03/19/12 - CONAN on TBS. https://www.youtube.com/watch?v=rULPBI9O8d4&index=4&list=PLXi05HpOWLE6eLdYEpYooYoNtO4DZ-w. (Feb. 2012).
[12]
Chao Dong, Chen Change Loy, Kaiming He, and Xiaoou Tang. 2014. Learning a deep convolutional network for image super-resolution. In European Conference on Computer Vision. Springer, 184--199.
[13]
Chao Dong, Chen Change Loy, and Xiaoou Tang. 2016. Accelerating the super-resolution convolutional neural network. In European Conference on Computer Vision. Springer, 391--407.
[14]
K. Fatahalian. 2016. The Rise of Mobile Visual Computing Systems. IEEE Pervasive Computing 15, 2 (Apr 2016), 8--13.
[15]
F. H. P. Fitzek and M. Reisslein. 2001. MPEG-4 and H.263 video traces for network performance evaluation. IEEE Network 15, 6 (Nov 2001), 40--54.
[16]
MATTIAS Fridström. 2016. The bandwidth problem: 5 issues the VR industry must resolve. https://venturebeat.com/2017/05/06/the-bandwidth-problem-5-issues-the-vr-industry-must-resolve/. (May 2016).
[17]
Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative adversarial nets. In Proc. NIPS. 2672--2680.
[18]
Fred Halsall. 2000. Multimedia Communications (1st ed.). Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.
[19]
Te-Yuan Huang, Nikhil Handigol, Brandon Heller, Nick McKeown, and Ramesh Johari. 2012. Confused, Timid, and Unstable: Picking a Video Streaming Rate is Hard. In Proc. IMC. 225--238.
[20]
Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. 2016. Image-to-image translation with conditional adversarial networks. arXiv preprint arXiv:1611.07004 (2016).
[21]
Junchen Jiang, Vyas Sekar, and Hui Zhang. 2012. Improving Fairness, Efficiency, and Stability in HTTP-based Adaptive Video Streaming with FESTIVE. In Proc. ACM CoNEXT.
[22]
Junchen Jiang, Shijie Sun, Vyas Sekar, and Hui Zhang. 2017. Pytheas: Enabling Data-Driven Quality of Experience Optimization Using Group-Based Exploration-Exploitation. In Proc. USENIX NSDI.
[23]
Jiwon Kim, Jung Kwon Lee, and Kyoung Mu Lee. 2016. Accurate image super-resolution using very deep convolutional networks. In Proc. IEEE CVPR. 1646--1654.
[24]
Jiwon Kim, Jung Kwon Lee, and Kyoung Mu Lee. 2016. Deeply-recursive convolutional network for image super-resolution. In Proc. IEEE CVPR. 1637--1645.
[25]
Wei-Sheng Lai, Jia-Bin Huang, Narendra Ahuja, and Ming-Hsuan Yang. 2017. Deep Laplacian Pyramid Networks for Fast and Accurate Super-Resolution. arXiv preprint arXiv:1704.03915 (2017).
[26]
Hongqiang Harry Liu, Ye Wang, Yang Richard Yang, Hao Wang, and Chen Tian. 2012. Optimizing cost and performance for content multi-homing. In Proc. ACM SIGCOMM. 371--382.
[27]
Xi Liu, Florin Dobrian, Henry Milner, Junchen Jiang, Vyas Sekar, Ion Stoica, and Hui Zhang. 2012. A case for a coordinated internet video control plane. In Proc. ACM SIGCOMM. 359--370.
[28]
William Lotter, Gabriel Kreiman, and David Cox. 2016. Deep predictive coding networks for video prediction and unsupervised learning. arXiv preprint arXiv:1605.08104 (2016).
[29]
Hongzi Mao, Ravi Netravali, and Mohammad Alizadeh. 2017. Neural Adaptive Video Streaming with Pensieve. In Proc. ACM SIGCOMM. ACM, New York, NY, USA, 197--210.
[30]
Michael Mathieu, Camille Couprie, and Yann LeCun. 2015. Deep multi-scale video prediction beyond mean square error. arXiv preprint arXiv:1511.05440 (2015).
[31]
Khalid Moammer. 2015. Nvidia: Pascal Is 10x Faster Than Maxwell, Launching in 2016 On 16nm - Features 3D Memory, NV-Link and Mixed Precision. http://wccftech.com/nvidia-pascal-gpu-gtc-2015/. (March 2015).
[32]
Tim Moynihan. 2014. WTF Just Happened: My New HDTV Makes Movies Look Unnaturally Smooth. https://www.wired.com/2014/08/wtf-just-happened-soap-opera-effect/. (Aug. 2014).
[33]
Matthew K. Mukerjee, David Naylor, Junchen Jiang, Dongsu Han, Srinivasan Seshan, and Hui Zhang. 2015. Practical, Real-time Centralized Control for CDN-based Live Video Delivery. In Proc. ACM SIGCOMM. 311--324.
[34]
Netflix. {n. d.}. Netflix & Binge: New Binge Scale Reveals TV Series We Devour and Those We Savor. https://media.netflix.com/en/press-releases/netflix-binge-new-binge-scale-reveals-tv-series-we-devour-and-those-we-savor-1. ({n. d.}). Last accessed: July 2017.
[35]
Erik Nygren, Ramesh K. Sitaraman, and Jennifer Sun. 2010. The Akamai Network: A Platform for High-performance Internet Applications. SIGOPS Oper. Syst. Rev. 44, 3 (Aug. 2010), 2--19.
[36]
Ooyala. {n. d.}. Ooyala GLOBAL VIDEO INDEX Q1 2017. http://go.ooyala.com/rs/447-EQK-225/images/Ooyala-Global-Video-Index-Q1-2017.pdf. ({n. d.}). Last accessed: July 2017.
[37]
Roger Pantos and William May. 2017. HTTP Live Streaming. Internet-Draft draft-pantos-http-live-streaming-23. IETF Secretariat. http://www.ietf.org/internet-drafts/draft-pantos-http-live-streaming-23.txt
[38]
Adrian Pennington. 2017. The realities of making VR and AR streaming a reality. https://knect365.com/media-networks/article/98d3564c-2e6b-43f7-8728-dda3038f818a/the-realities-of-making-vr-and-ar-streaming-a-reality. (July 2017).
[39]
MarcAurelio Ranzato, Arthur Szlam, Joan Bruna, Michael Mathieu, Ronan Collobert, and Sumit Chopra. 2014. Video (language) modeling: a baseline for generative models of natural videos. arXiv preprint arXiv:1412.6604 (2014).
[40]
Reuters. {n. d.}. How Network TV Figured Out Binge-Watching. http://fortune.com/2016/03/11/netflix-changing-game-network-tv/. ({n. d.}). Last accessed: July 2017.
[41]
Sandvine. {n. d.}. 2016 Global Internet Phenomena Report: North America and Latin America. https://www.sandvine.com/downloads/general/global-internet-phenomena/2016/global-internet-phenomena-report-latin-america-and-north-america.pdf. ({n. d.}). Last accessed: July 2017.
[42]
Wenzhe Shi, Jose Caballero, Ferenc Huszar, Johannes Totz, Andrew P. Aitken, Rob Bishop, Daniel Rueckert, and Zehan Wang. 2016. RealTime Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network. In Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
[43]
Ying Tai, Jian Yang, and Xiaoming Liu. 2017. Image Super-Resolution via Deep Recursive Residual Network. In Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
[44]
Lucas Theis, Wenzhe Shi, Andrew Cunningham, and Ferenc Huszár. 2017. Lossy image compression with compressive autoencoders. arXiv preprint arXiv:1703.00395 (2017).
[45]
Valley Voices. 2017. Why The Internet Pipes Will Burst When Virtual Reality Takes Off. https://www.forbes.com/sites/valleyvoices/2016/02/09/why-the-internet-pipes-will-burst-if-virtual-reality-takes-off/#7049e4583858. (July 2017).
[46]
Jiang Wang, Yang Song, Thomas Leung, Chuck Rosenberg, Jingbin Wang, James Philbin, Bo Chen, and Ying Wu. 2014. Learning fine-grained image similarity with deep ranking. In Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 1386--1393.
[47]
John Watkinson. 2004. The MPEG Handbook: MPEG-1, MPEG-2, MPEG-4. Taylor & Francis.
[48]
Patrick Wendell, Joe Wenjie Jiang, Michael J. Freedman, and Jennifer Rexford. 2010. DONAR: Decentralized Server Selection for Cloud Services. In Proc. ACM SIGCOMM.
[49]
Sergey Zagoruyko and Nikos Komodakis. 2015. Learning to compare image patches via convolutional neural networks. In Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 4353--4361.
[50]
Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy McCauley, Michael J Franklin, Scott Shenker, and Ion Stoica. 2012. Resilient distributed datasets: A fault-tolerant abstraction for in-memory cluster computing. In Proc. USENIX NSDI.
[51]
Zhang, Zhengdong and Sze, Vivienne. 2017. FAST: A Framework to Accelerate Super-Resolution Processing on Compressed Videos. In CVPR Workshop on New Trends in Image Restoration and Enhancement.
[52]
T. Zinner, O. Hohlfeld, O. Abboud, and T. Hossfeld. 2010. Impact of frame rate and resolution on objective QoE metrics. In Proc. International Workshop on Quality of Multimedia Experience (QoMEX). 29--34.

Cited By

View all
  • (2025)REM: Enabling Real-Time Neural-Enhanced Video Streaming on Mobile Devices Using Macroblock-Aware Lookup TableIEEE Transactions on Mobile Computing10.1109/TMC.2024.349644324:3(2085-2097)Online publication date: Mar-2025
  • (2025)Collaborative Video Streaming With Super-Resolution in Multi-User MEC NetworksIEEE Transactions on Mobile Computing10.1109/TMC.2024.346168524:2(571-584)Online publication date: Feb-2025
  • (2024)Accelerated Neural Enhancement for Video Analytics With Video Quality AdaptationIEEE/ACM Transactions on Networking10.1109/TNET.2024.337510832:4(3045-3060)Online publication date: Aug-2024
  • Show More Cited By

Index Terms

  1. How will Deep Learning Change Internet Video Delivery?
        Index terms have been assigned to the content through auto-classification.

        Recommendations

        Comments

        Information & Contributors

        Information

        Published In

        cover image ACM Conferences
        HotNets '17: Proceedings of the 16th ACM Workshop on Hot Topics in Networks
        November 2017
        206 pages
        ISBN:9781450355698
        DOI:10.1145/3152434
        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

        Sponsors

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        Published: 30 November 2017

        Permissions

        Request permissions for this article.

        Check for updates

        Qualifiers

        • Research-article
        • Research
        • Refereed limited

        Conference

        HotNets-XVI
        Sponsor:
        HotNets-XVI: The 16th ACM Workshop on Hot Topics in Networks
        November 30 - December 1, 2017
        CA, Palo Alto, USA

        Acceptance Rates

        HotNets '17 Paper Acceptance Rate 28 of 124 submissions, 23%;
        Overall Acceptance Rate 110 of 460 submissions, 24%

        Contributors

        Other Metrics

        Bibliometrics & Citations

        Bibliometrics

        Article Metrics

        • Downloads (Last 12 months)31
        • Downloads (Last 6 weeks)2
        Reflects downloads up to 07 Mar 2025

        Other Metrics

        Citations

        Cited By

        View all
        • (2025)REM: Enabling Real-Time Neural-Enhanced Video Streaming on Mobile Devices Using Macroblock-Aware Lookup TableIEEE Transactions on Mobile Computing10.1109/TMC.2024.349644324:3(2085-2097)Online publication date: Mar-2025
        • (2025)Collaborative Video Streaming With Super-Resolution in Multi-User MEC NetworksIEEE Transactions on Mobile Computing10.1109/TMC.2024.346168524:2(571-584)Online publication date: Feb-2025
        • (2024)Accelerated Neural Enhancement for Video Analytics With Video Quality AdaptationIEEE/ACM Transactions on Networking10.1109/TNET.2024.337510832:4(3045-3060)Online publication date: Aug-2024
        • (2024)Adaptive Video Streaming in Multi-Tier Computing Networks: Joint Edge Transcoding and Client EnhancementIEEE Transactions on Mobile Computing10.1109/TMC.2023.326304623:4(2657-2670)Online publication date: Apr-2024
        • (2024)Joint Delay-Sensitive and Power-Efficient Quality Control of Dynamic Video Streaming Using Adaptive Super-ResolutionIEEE Transactions on Green Communications and Networking10.1109/TGCN.2023.33194378:1(103-117)Online publication date: Mar-2024
        • (2024)BiSwift: Bandwidth Orchestrator for Multi-Stream Video Analytics on EdgeIEEE INFOCOM 2024 - IEEE Conference on Computer Communications10.1109/INFOCOM52122.2024.10621392(1181-1190)Online publication date: 20-May-2024
        • (2024)Towards Efficient Neural Video Delivery via Scalable and Dynamic Networks2024 10th International Conference on Big Data Computing and Communications (BigCom)10.1109/BIGCOM65357.2024.00039(225-232)Online publication date: 9-Aug-2024
        • (2024)On designing a profitable system model to harmonize the tripartite dissension in content delivery applicationsJournal of Network and Computer Applications10.1016/j.jnca.2024.103965230(103965)Online publication date: Oct-2024
        • (2024)Super-resolution with perceptual quality for improved live streaming delivery on edge computingComputer Networks: The International Journal of Computer and Telecommunications Networking10.1016/j.comnet.2024.110463248:COnline publication date: 1-Jun-2024
        • (2024)Enhanced Asymmetric Invertible Network for Neural Video DeliveryComputer Vision – ACCV 202410.1007/978-981-96-0960-4_23(379-394)Online publication date: 8-Dec-2024
        • Show More Cited By

        View Options

        Login options

        View options

        PDF

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader

        Figures

        Tables

        Media

        Share

        Share

        Share this Publication link

        Share on social media