skip to main content
research-article

Perceptual Constancy in the Reproduction of Virtual Tactile Textures With Surface Displays

Published: 21 February 2018 Publication History

Abstract

For very rough surfaces, friction-induced vibrations contain frequencies that change in proportion to sliding speed. Given the poor capacity of the somatosensory system to discriminate frequencies, this fact raises the question of how accurately finger sliding speed must be known during the reproduction of virtual textures with a surface tactile display. During active touch, ten observers were asked to discriminate texture recordings corresponding to different speeds. The samples were constructed from a common texture, which was resampled at various frequencies to give a set of stimuli of different swiping speeds. In trials, they swiped their finger in rapid succession over a glass plate, which vibrated to accurately reproduce three texture recordings. Two of these recordings were identical and a third differed in that the sample represented a texture swiped at a speed different from the other two. Observers identified which of the three samples felt different. For a metal mesh texture recording, seven observers reported differences when the speed varied by 60, 80, and 100mm/s while the other three did not reach a discrimination threshold. For a finer leather chamois texture recording, thresholds were never reached in the 100mm/s range. These results show that the need for high-accuracy measurement of swiping speed during texture reproduction may actually be quite limited compared to what is commonly found in the literature.

References

[1]
M. Altinsoy and S. Merchel. 2012. Electrotactile feedback for handheld devices with touch screen and simulation of roughness. IEEE Trans. Haptics 5, 1 (2012), 6--13.
[2]
L. Armstrong and L. E. Marks. 1999. Haptic perception of linear extent. Percept. Psychophys. 61, 6 (1999), 1211--1226.
[3]
S. Asano, S. Okamoto, and Y. Yamada. 2015. Vibrotactile stimulation to increase and decrease texture roughness. IEEE Trans. Hum.-Mach. Syst. 45, 3 (2015), 393--398.
[4]
C. G. Atkeson and J. M. Hollerbach. 1984. Kinematic Features of Unrestrained Arm Movements. AI Memo AIM-790. MIT.
[5]
M. Biet, F. Giraud, and B. Lemaire-Semail. 2007. Squeeze film effect for the design of an ultrasonic tactile plate. IEEE Trans. Ultrason., Ferroelectr. Freq. Control 54, 12 (2007), 2678--2688.
[6]
S. Bochereau, B. Dzidek, M. Adams, and V. Hayward. 2017. Characterizing and imaging gross and real finger contacts under dynamic loading. IEEE Trans. Haptics, in press (2017).
[7]
S. Bochereau, S. Sinclair, and V. Hayward. 2015. Looking for physical invariants in the mechanical response of a tactually scanned braille dot. In Proceedings of the World Haptics Conference. 119--124.
[8]
G. Campion and V. Hayward. 2005. Fundamental limits in the rendering of virtual haptic textures. In Proceedings of the 1st Joint Eurohaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems. 263--270.
[9]
C. J. Cascio and K. Sathian. 2001. Temporal cues contribute to tactile perception of roughness. J. Neurosci. 21, 14 (2001), 5289--5296.
[10]
S. Coren and J. S. Girgus. 1980. Principles of perceptual organization and spatial distortion: The gestalt illusions. Jo. Exp. Psychol. Hum. Percept. Perform. 6, 3 (1980), 404--412.
[11]
H. Culberston and K. J. Kuchenbecker. 2015. Should haptic texture vibrations respond to user force and speed? Proceedings of World Haptics Conference. 106--112.
[12]
H. Culberston, J. Unwin, and K. J. Kuchenbecker. 2014. Modeling and rendering realistic textures from unconstrained tool-surface interactions. IEEE Trans. Haptics 7, 3 (2014), 381--292.
[13]
C. J. Dallmann, M. O. Ernst, and A. Moscatelli. 2015. The role of vibration in tactile speed perception. J. Neurophysiol. 114, 6 (2015), 3131--3139.
[14]
B. Delhaye, V. Hayward, P. Lefèvre, and J.-L. Thonnard. 2012. Texture-induced vibrations in the forearm during tactile exploration. Front. Behav. Neurosci. 6, 37 (2012), 60--69.
[15]
A. Dépeault, E. M. Meftah, and C. E. Chapman. 2008. Tactile speed scaling: Contributions of time and space. J. Neurophysiol. 99 (2008), 1422--1434.
[16]
O. Deroy, C. Spence, and U. Noppeney. 2016. Metacognition in multisensory perception. Trends Cogn. Sci. 20, 10 (2016), 736--747.
[17]
L. Dupin, V. Hayward, and M. Wexler. 2015. Direct coupling of haptic signals between hands. Proc. Natl. Acad. Sci. U.S.A. 112, 2 (2015), 619--624.
[18]
F. Giraud, M. Amberg, and B. Lemaire-Semail. 2013. Merging two tactile stimulation principles: Electrovibration and squeeze film effect. In Proceedings of the World Haptics Conference. IEEE, 199--203.
[19]
G. D. Goff. 1967. Differential discrimination of frequency of cutaneous mechanical vibration.J. Exp. Psychol. 74, 2 (1967), 294--299.
[20]
A. W. Goodwin, K. Sathian, K. T. John, and I. Darian-Smith. 1989. Spatial and temporal factors determining afferent fiber responses to a grating moving sinusoidally over the monkey’s fingerpad. J. Neurosci. 9, 4 (1989), 1280--1293.
[21]
J. Hartcher-O’Brien, A. Terekhov, M. Auvray, and V. Hayward. 2014. Haptic shape constancy across distance. In Haptics: Neuroscience, Devices, Modeling, and Applications. Springer, Berlin, 77--84.
[22]
J. E. Hochberg. 1957. Effects of the Gestalt revolution: The Cornell symposium on perception. Psychol. Rev. 64, 2 (1957), 73--84.
[23]
J. M. Hollerbach and T. Flash. 1982. Dynamic interactions between limb segments during planar arm movement. Biol. Cybernet. 44, 1 (1982), 67--77.
[24]
M. Hollins, S. J. Bensmaïa, and E. A. Roy. 2002. Vibrotaction and texture perception. Behav. Brain Res. 135, 1 (2002), 51--56.
[25]
M. Hollins and S. R. Risner. 2000. Evidence for the duplex theory of tactile texture perception. Percepti. Psychophys. 62, 4 (2000), 695--705.
[26]
B. Hughes, J. Wang, D. Rosic, and K. Palmer. 2007. Texture gradients and perceptual constancy under haptic exploration. In Proceedings of the 2nd Joint EuroHaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems. IEEE, 66--71.
[27]
S. P. Jadhav, J. Wolfe, and D. E. Feldman. 2009. Sparse temporal coding of elementary tactile features during active whisker sensation. Nature Neurosci. 12, 6 (2009), 792--800.
[28]
F. Janabi-Sharifi, V. Hayward, and C.-S. J. Chen. 2000. Discrete-time adaptive windowing for velocity estimation. IEEE Trans. Control Syst. Technol. 8, 6 (2000), 1003--1009.
[29]
L. M. Jones, D. A. Depireux, D. J. Simons, and A. Keller. 2004. Robust temporal coding in the trigeminal system. Science 304, 5679 (2004), 1986--1989.
[30]
R. L. Klatzky, S. J. Lederman, C. Hamilton, M. Grindley, and R. H. Swendsen.2003. Feeling textures through a probe: Effects of probe and surface geometry and exploratory factors. Percept. Psychophys. 65, 4 (2003), 613--631.
[31]
G. D. Lamb. 1983. Tactile discrimination of textured surfaces: Psychophysical performance measurements in humans. J. Physiol. 338, 1 (1983), 551--565.
[32]
S. J. Lederman, R. L. Klatzky, A. Collins, and J. Wardell. 1987. Exploring environments by hand or foot: Time-based heuristics for encoding distance in movement space. J. Exp. Psychol. Learn. Mem. Cogn. 13, 4 (1987), 606--614.
[33]
S. J. Lederman. 1983. Tactual roughness perception: Spatial and temporal determinants. Can. J. Psychol. 37, 4 (1983), 498--511.
[34]
S. J. Lederman, R. L. Klatzky, C. L. Hamilton, and G. I. Ramsay. 1999. Perceiving roughness via a rigid probe: Psychophysical effects of exploration speed and mode of touch. Haptics-e The Electronic Journal of Haptic Research 1, 1 (1999), 1--20.
[35]
X. Libouton, O. Barbier, Y. Bergera, L. Plaghkia, and Jean-Louis Thonnard. 2012. Tactile roughness discrimination of the finger pad relies primarily on vibration sensitive afferents not necessarily located in the hand. Behav. Brain Res. 229 (2012), 273--279.
[36]
L. R. Manfredi, H. P. Saal, K. J. Brown, M. C. Zielinski, J. F. Dammann, V. S. Polashock, and S. J. Bensmaïa. 2014. Natural scenes in tactile texture. J. Neurophysiol. 111, 9 (2014), 1792--1802.
[37]
E.-M. Meftah, L. Belingard, and C. E. Chapman. 2000. Relative effects of the spatial and temporal characteristics of scanned surfaces on human perception of tactile roughness using passive touch. Exp. Brain Res. 132, 3 (2000), 351--361.
[38]
D. J. Meyer, M. A. Peshkin, and J. E. Colgate. 2013. Fingertip friction modulation due to electrostatic attraction. In Proceedings of the World Haptics Conference. IEEE, 43--48.
[39]
A. Moscatelli, V. Hayward, M. Wexler, and M. O. Ernst. 2015. Illusory tactile motion perception: An analog of the visual filehne illusion. Scientific Reports 5 (2015), 14584.
[40]
David J. Murray, Robert R. Ellis, Christina A. Bandomir, and Helen E. Ross. 1999. Charpentier (1891) on the size-weight illusion. Percep. Psychophys. 61, 8 (1999), 1681--1685.
[41]
T. Nara, M. Takasaki, T. Maeda, T. Higuchi, S. Ando, and S. Tachi. 2001. Surface acoustic wave tactile display. Comput. Graph. Appl. 21, 6 (2001), 56--63.
[42]
A. Ono. 1969. Interdependence in successive judgments of the duration, distance and speed of a manual movement. Tohoku Psychol. Folia 28 (1969), 29--53.
[43]
R. Plamondon. 1995. A kinematic theory of rapid human movements, Part II. Movement time and control. Biol. Cybernet. 72 (1995), 309--320.
[44]
J. Rolfe and J. Bennett. 2009. The impact of offering two versus three alternatives in choice modelling experiments. Ecol. Econ. 68 (2009), 1140--1148.
[45]
E. Samur. 2012. Performance Metrics for Haptic Interfaces. Springer, London. 43--65.
[46]
J. F. Soechting and F. Lacquaniti. 1981. Invariant characteristics of a pointing movement in man. J. Neurosci. 1, 7 (1981), 710--720.
[47]
W. M. Bergmann Tiest and A. M. L. Kappers. 2006. Analysis of haptic perception of materials by multidimensional scaling and physical measurements of roughness and compressibility. Acta Psychol. 121, 1 (2006), 1--20.
[48]
W. M. B. Tiest, L. M. A. van der Hoff, and A. M. Kappers. 2011. Cutaneous and kinaesthetic perception of traversed distance. In Proceedings of the World Haptics Conference. IEEE, 593--597.
[49]
Y. Uno, M. Kawato, and R. Suzuki. 1989. Formation and control of optimal trajectory in human multijoint arm movement. Biol. Cybernet. 61 (1989), 89--101.
[50]
S. Wapner, J. Weinberg, J. A. Glick, and G. Rand. 1967. Effect of speed of movement on tactual-kinesthetic perception of extent. Amer. J. Psychol. 80, 4 (1967), 608--613.
[51]
T. Watanabe and S. Fukui.1995. A method for controlling tactile sensation of surface roughness using ultrasonic vibration. In Proceedings of the IEEE International Conference on Robotics and Automation, Vol. 1. IEEE, 1134--1139.
[52]
A. I. Weber, H. Saal, J. D. Lieberb, J.-W. Cheng, L. R. Manfredi, J. F. Dammann III, and S. J. Bensmaïa. 2013. Spatial and temporal codes mediate the tactile perception of natural textures. Proc. Natl. Acad. Sci. U.S.A. 110, 42 (2013), 17107--17112.
[53]
M. Wexler and V. Hayward. 2011. Weak Spatial Constancy in Touch. In Proceedings of the World Haptics Conference. IEEE, 605--607.
[54]
M. Wiertlewski, D. Leonardis, D. J. Meyer, and J. E. Colgate. 2014. A high-fidelity surface-haptic device for texture rendering on bare finge. In Haptics: Neuroscience, Devices, Modelling and Applications. Springer, Berlin, 241--248.
[55]
M. Wiertlewski, J. Lozada, and V. Hayward. 2011. The spatial spectrum of tangential skin displacement can encode tactual texture. IEEE Trans. Robot. 27, 3 (2011), 461--472.
[56]
M. Wiertlewski, J. Lozada, E. Pissaloux, and V. Hayward. 2010. Tactile interface for stimulation of fingertip via lateral traction. In Proceedings of the12th International Conference on New Actuators. Messe, Bremen, 520--523.
[57]
L. Winfield, J. Glassmire, J. E. Colgate, and M. Peshkin. 2007. T-PaD: Tactile pattern display through variable friction reduction. In Proceedings of the World Haptics Conference. 421--426.
[58]
N. Yeung and C. Summerfield. 2012. Metacognition in human decision-making: Confidence and error monitoring. Philos. Trans. Roy. Soc. B 367, 1594 (2012), 1310--1321.
[59]
T. Yoshioka, J. C. Craig, G. C. Beck, and S. S. Hsiao. 2011. Perceptual constancy of texture roughness in the tactile system. J. Neurosci. 31, 48 (2011), 17603--17611.
[60]
M. Ziat, V. Hayward, C. E. Chapman, M. O. Ernst, and C. Lenay. 2010. Tactile suppression of displacement. Exp. Brain Res. 206, 3 (2010), 299--310.

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Transactions on Applied Perception
ACM Transactions on Applied Perception  Volume 15, Issue 2
April 2018
104 pages
ISSN:1544-3558
EISSN:1544-3965
DOI:10.1145/3190502
Issue’s Table of Contents
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the Owner/Author.

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 21 February 2018
Accepted: 01 September 2017
Revised: 01 September 2017
Received: 01 November 2016
Published in TAP Volume 15, Issue 2

Check for updates

Author Tags

  1. Tactile stimulation
  2. design requirements
  3. haptic texture rendering
  4. speed perception

Qualifiers

  • Research-article
  • Research
  • Refereed

Funding Sources

  • European Research Council (FP7) ERC Advanced
  • FP7 Marie Curie Initial Training Network PROTOTOUCH

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)23
  • Downloads (Last 6 weeks)4
Reflects downloads up to 16 Feb 2025

Other Metrics

Citations

Cited By

View all
  • (2024)Decoding roughness perception in distributed haptic devicesPNAS Nexus10.1093/pnasnexus/pgae4683:10Online publication date: 16-Oct-2024
  • (2023)Obituary: Vincent Hayward (1955–2023)Perception10.1177/0301006623119876352:10(752-756)Online publication date: 7-Sep-2023
  • (2023)Distributed Tactile Display with Dual Array DesignIEEE Transactions on Haptics10.1109/TOH.2023.325437316:2(334-338)Online publication date: 1-Apr-2023
  • (2023)Controllable Visual-Tactile Synthesis2023 IEEE/CVF International Conference on Computer Vision (ICCV)10.1109/ICCV51070.2023.00648(7017-7029)Online publication date: 1-Oct-2023
  • (2023)Conditional Generative Adversarial Network-Based Tactile Stimulus Generation for Ultrasonic Tactile DisplayIEEE Access10.1109/ACCESS.2023.328086011(53531-53537)Online publication date: 2023
  • (2022)Tactile Texture Display Combining Vibrotactile and Electrostatic-friction Stimuli: Substantial Effects on Realism and Moderate Effects on Behavioral ResponsesACM Transactions on Applied Perception10.1145/353973319:4(1-18)Online publication date: 7-Nov-2022
  • (2022)Big Winners and Small Losers of Zero-ratingACM Transactions on Modeling and Performance Evaluation of Computing Systems10.1145/35397317:1(1-24)Online publication date: 1-Sep-2022
  • (2022)SkillBot: Identifying Risky Content for Children in Alexa SkillsACM Transactions on Internet Technology10.1145/353960922:3(1-31)Online publication date: 25-Jul-2022
  • (2022)Adaptive Clock Management of HLS-generated Circuits on FPGAsACM Transactions on Reconfigurable Technology and Systems10.1145/352014015:4(1-32)Online publication date: 14-Dec-2022
  • (2022)Data-Driven Playback of Natural Tactile Texture Via Broadband Friction ModulationIEEE Transactions on Haptics10.1109/TOH.2021.313009115:2(429-440)Online publication date: 1-Apr-2022
  • Show More Cited By

View Options

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media