skip to main content
10.1145/3154353.3154366acmconferencesArticle/Chapter ViewAbstractPublication PagessccgConference Proceedingsconference-collections
research-article

Compensating anisotropy in histological serial sections with optical flow-based interpolation

Published:15 May 2017Publication History

ABSTRACT

Histological serial sections allow for 3D representation of anatomical structures in microscopic to mesoscopic range. However, due to the nature of the acquisition, they suffer from severe anisotropy: 14-to-1 in a single average microscopic paraffin section. We present an interpolation method based on optical flow and show that standard interpolation methods are less suited for serial sections.

With our non-linear interpolation approach we are able to represent the "movement" of image parts that are of interest. This allows for better 3D reconstructions and further insights in microanatomy.

References

  1. Simon Baker, Daniel Scharstein, J. P. Lewis, Stefan Roth, Michael J. Black, and Richard Szeliski. 2011. A Database and Evaluation Methodology for Optical Flow. International Journal of Computer Vision 92, 1 (2011), 1--31. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. J. L. Barron, D. J. Fleet, and S. S. Beauchemin. 1994. Performance of optical flow techniques. International Journal of Computer Vision 12, 1 (1994), 43--77. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. U. Baǧci and L. Bai. 2008. Registration of standardized histological images in feature space. In Proc. SPIE, Vol. 6914.Google ScholarGoogle Scholar
  4. Gary Bradski and Adrian Kaehler. 2008. Learning OpenCV: Computer vision with the OpenCV library. O'Reilly.Google ScholarGoogle Scholar
  5. T. Brox, A. Bruhn, N. Papenberg, and J. Weickert. 2004. High accuracy optical flow estimation based on a theory for warping. In European Conference on Computer Vision (ECCV) (LNCS 3024). Springer, 25--36. http://lmb.informatik.uni-freiburg.de//Publications/2004/Bro04aGoogle ScholarGoogle Scholar
  6. T. Brox and J. Malik. 2011. Large Displacement Optical Flow: Descriptor Matching in Variational Motion Estimation. IEEE Transactions on Pattern Analysis and Machine Intelligence 33, 3 (2011), 500--13. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Wilhelm Burger and Mark James Burge. 2009. Principles of digital image processing. Springer. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Albert Cardona, Stephan Saalfeld, Stephan Preibisch, Benjamin Schmid, Anchi Cheng, Jim Pulokas, Pavel Tomancak, and Volker Hartenstein. 2010. An Integrated Micro-and Macroarchitectural Analysis of the Drosophila Brain by Computer-Assisted Serial Section Electron Microscopy. PLOS Biology 8, 10 (10 2010), 1--17.Google ScholarGoogle Scholar
  9. Jonathan Chappelow, B. Nicolas Bloch, Neil Rofsky, Elizabeth Genega, Robert Lenkinski, William DeWolf, and Anant Madabhushi. 2011. Elastic registration of multimodal prostate MRI and histology via multiattribute combined mutual information. Med. Phys. 38, 4 (2011), 2005--18.Google ScholarGoogle ScholarCross RefCross Ref
  10. Amalia Cifor, Li Bai, and Alain Pitiot. 2011. Smoothness-guided 3-D reconstruction of 2-D histological images. NeuroImage 56, 1 (2011), 197--211.Google ScholarGoogle ScholarCross RefCross Ref
  11. Claude E Duchon. 1979. Lanczos filtering in one and two dimensions. Journal of Applied Meteorology 18, 8 (1979), 1016--22.Google ScholarGoogle ScholarCross RefCross Ref
  12. Jan Ehrhardt, René Werner, Dennis Säring, Thorsten Frenzel, Wei Lu, Daniel Low, and Heinz Handels. 2007. An optical flow based method for improved reconstruction of 4D CT data sets acquired during free breathing. Medical Physics 34, 2 (2007), 711--21.Google ScholarGoogle ScholarCross RefCross Ref
  13. Gunnar Farnebäck. 2003. Two-Frame Motion Estimation Based on Polynomial Expansion. In Image Analysis, Josef Bigun and Tomas Gustavsson (Eds.). 363--70. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Andriy Fedorov, Reinhard Beichel, Jayashree Kalpathy-Cramer, Julien Finet, Jean-Christophe Fillion-Robin, Sonia Pujol, Christian Bauer, Dominique Jennings, Fiona Fennessy, Milan Sonka, et al. 2012. 3D Slicer as an image computing platform for the Quantitative Imaging Network. Magn. Reson. Imaging 30, 9 (2012), 1323--41.Google ScholarGoogle ScholarCross RefCross Ref
  15. J. M. Gijtenbeek, P. Wesseling, C. Maass, L. Burgers, and J. A. van der Laak. 2005. Three-dimensional reconstruction of tumor microvasculature: simultaneous visualization of multiple components in paraffin-embedded tissue. Angiogenesis 8, 4 (2005), 297--305.Google ScholarGoogle ScholarCross RefCross Ref
  16. E. Guest, E. Berry, R.A. Baldock, M. Fidrich, and M.A. Smith. 2001. Robust point correspondence applied to two- and three-dimensional image registration. IEEE T. Pattern Anal. Mach. Intell. 23, 2 (2001), 165--79. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Berthold K.P. Horn and Brian G. Schunck. 1981. Determining optical flow. Artificial Intelligence 17, 1 (1981), 185--203. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Tao Ju. 2004. Robust repair of polygonal models. ACM T. Graphic. 23, 3 (2004), 888--95. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Stephen L. Keeling and Wolfgang Ring. 2005. Medical Image Registration and Interpolation by Optical Flow with Maximal Rigidity. Journal of Mathematical Imaging and Vision 23, 1 (2005), 47--65. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. R. Keys. 1981. Cubic convolution interpolation for digital image processing. IEEE Transactions on Acoustics, Speech, and Signal Processing 29, 6 (1981), 1153--60.Google ScholarGoogle ScholarCross RefCross Ref
  21. A. M. Khan, N. Rajpoot, D. Treanor, and D. Magee. 2014. A Nonlinear Mapping Approach to Stain Normalization in Digital Histopathology Images Using Image-Specific Color Deconvolution. IEEE T. Biomed. Eng. 61, 6 (2014), 1729--38.Google ScholarGoogle ScholarCross RefCross Ref
  22. T. M. Lehmann, C. Gonner, and K. Spitzer. 1999. Survey: interpolation methods in medical image processing. IEEE T. Med. Imaging 18, 11 (1999), 1049--75.Google ScholarGoogle ScholarCross RefCross Ref
  23. O. Lobachev, Ch. Ulrich, B. S. Steiniger, V. Wilhelmi, V. Stachniss, and M. Guthe. 2017. Feature-based multi-resolution registration of immunostained serial sections. Med. Image Anal. 35 (2017), 288--302.Google ScholarGoogle ScholarCross RefCross Ref
  24. William E. Lorensen and Harvey E. Cline. 1987. Marching cubes: A high resolution 3D surface construction algorithm. Comput. Graph. (ACM) 21, 4 (1987), 163--9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Bruce D Lucas and Takeo Kanade. 1981. An iterative image registration technique with an application to stereo vision.. In International Joint Conference on Artificial Intelligence (IJCAI '81). 674--9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Bin Ma, Lei Wang, Reinhard von Wasielewski, Werner Lindenmaier, and Kurt E. J. Dittmar. 2008. Serial sectioning and three-dimensional reconstruction of mouse Peyer's patch. Micron 39, 7 (2008), 967--75.Google ScholarGoogle ScholarCross RefCross Ref
  27. S. Ourselin, A. Roche, G. Subsol, X. Pennec, and N. Ayache. 2001. Reconstructing a 3D structure from serial histological sections. Image & Vision Comput. 19 (2001), 25--31. Issue 1--2.Google ScholarGoogle ScholarCross RefCross Ref
  28. E. Reinhard, M. Adhikhmin, B. Gooch, and P. Shirley. 2001. Color transfer between images. IEEE Comput. Graph. 21, 5 (2001), 34--41. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Jerome Revaud, Philippe Weinzaepfel, Zaid Harchaoui, and Cordelia Schmid. 2015. EpicFlow: Edge-Preserving Interpolation of Correspondences for Optical Flow. In Computer Vision and Pattern Recognition. 1164--72.Google ScholarGoogle Scholar
  30. Douglas S. Richardson and Jeff W. Lichtman. 2015. Clarifying Tissue Clearing. Cell 162, 2 (2015), 246--57.Google ScholarGoogle ScholarCross RefCross Ref
  31. D. Rueckert, L. I. Sonoda, C. Hayes, D. L G Hill, M. O. Leach, and D.J. Hawkes. 1999. Non-rigid registration using free-form deformations: application to breast MR images. IEEE Trans. Med. Imaging 18, 8 (1999), 712--21.Google ScholarGoogle ScholarCross RefCross Ref
  32. Stephan Saalfeld, Richard Fetter, Albert Cardona, and Pavel Tomancak. 2012. Elastic volume reconstruction from series of ultra-thin microscopy sections. Nat. Methods 9, 7 (2012), 717--20.Google ScholarGoogle ScholarCross RefCross Ref
  33. Johannes Schindelin, Ignacio Arganda-Carreras, Erwin Frise, Verena Kaynig, Mark Longair, Tobias Pietzsch, Stephan Preibisch, Curtis Rueden, Stephan Saalfeld, Benjamin Schmid, et al. 2012. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 7 (2012), 676--82.Google ScholarGoogle ScholarCross RefCross Ref
  34. Julia A. Schnabel, Daniel Rueckert, Marcel Quist, Jane M. Blackall, Andy D. Castellano-Smith, Thomas Hartkens, Graeme P. Penney, Walter A. Hall, Haiying Liu, et al. 2001. A Generic Framework for Non-rigid Registration Based on Non-uniform Multi-level Free-Form Deformations. In MICCAI '01. Springer, 573--81. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. A. Sotiras, C. Davatzikos, and N. Paragios. 2013. Deformable Medical Image Registration: A Survey. IEEE T. Med. Imaging 32, 7 (2013), 1153--90.Google ScholarGoogle ScholarCross RefCross Ref
  36. Birte Steiniger, Lars Rüttinger, and Peter J. Barth. 2003. The Three-dimensional Structure of Human Splenic White Pulp Compartments. J. Histochem. Cytochem. 51, 5 (2003), 655--63.Google ScholarGoogle ScholarCross RefCross Ref
  37. B. S. Steiniger, S. Bubel, W. Böckler, K. Lampp, A. Seiler, B. Jablonski, M. Guthe, and V. Stachniss. 2013. Immunostaining of Pulpal Nerve Fibre Bundle/Arteriole Associations in Ground Serial Sections of Whole Human Teeth Embedded in Technovit®9100. Cells Tissues Organs 198, 1 (2013), 57--65.Google ScholarGoogle ScholarCross RefCross Ref
  38. Birte S. Steiniger, Anja Seiler, Katrin Lampp, Verena Wilhelmi, and Vitus Stachniss. 2014a. B lymphocyte compartments in the human splenic red pulp: capillary sheaths and periarteriolar regions. Histochem. Cell Biol. 141, 5 (2014), 507--18.Google ScholarGoogle ScholarCross RefCross Ref
  39. Birte S. Steiniger, Vitus Stachniss, Verena Wilhelmi, Anja Seiler, Katrin Lampp, Andreas Neff, Michael Guthe, and Oleg Lobachev. 2016. Three-dimensional arrangement of human bone marrow microvessels revealed by immunohistology in undecalcified sections. PLOS ONE 11, 12 (12 2016), 1--25.Google ScholarGoogle Scholar
  40. Birte S. Steiniger, Verena Wilhelmi, Anja Seiler, Katrin Lampp, and Vitus Stachniss. 2014b. Heterogeneity of stromal cells in the human splenic white pulp. Fibroblastic reticulum cells, follicular dendritic cells and a third superficial stromal cell type. Immunol. 143, 3 (2014), 462--77.Google ScholarGoogle ScholarCross RefCross Ref
  41. D. Sun, S. Roth, and M. J. Black. 2010. Secrets of optical flow estimation and their principles. In 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 2432--9.Google ScholarGoogle Scholar
  42. Gabriel Taubin. 1995. A signal processing approach to fair surface design. In Proceedings of the 22nd annual conference on Computer graphics and interactive techniques. ACM, 351--8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. P. Thevenaz, T. Blu, and M. Unser. 2000. Interpolation revisited. IEEE T. Med. Imaging 19, 7 (2000), 739--58.Google ScholarGoogle ScholarCross RefCross Ref
  44. J.-P. Thirion. 1998. Image matching as a diffusion process: an analogy with Maxwell's demons. Med. Image Anal. 2, 3 (1998), 243--60.Google ScholarGoogle ScholarCross RefCross Ref
  45. Christine Ulrich, Oleg Lobachev, Birte S. Steiniger, and Michael Guthe. 2014. Imaging the Vascular Network of the Human Spleen from Immunostained Serial Sections. In Visual Computing for Biology and Medicine (VCBM '14), Ivan Viola, Katja Buehler, and Timo Ropinski (Eds.). EG. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Tao Wan, B. Nicolas Bloch, Shabbar Danish, and Anant Madabhushi. 2013. A novel point-based nonrigid image registration scheme based on learning optimal landmark configurations. In Medical Imaging 2013: Image Processing (Proc. SPIE 8669). 866934-866934-12.Google ScholarGoogle Scholar
  47. Yiwen Xu, J. Geoffrey Pickering, Zengxuan Nong, Eli Gibson, John-Michael Arpino, Hao Yin, and Aaron D. Ward. 2015. A Method for 3D Histopathology Reconstruction Supporting Mouse Microvasculature Analysis. PLoS ONE 10, 5 (05 2015), 1--24.Google ScholarGoogle Scholar
  48. C. W. Zitnick, N. Jojic, and Sing Bing Kang. 2005. Consistent segmentation for optical flow estimation. In International Conference on Computer Vision (ICCV '05). IEEE, 1308--15. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Compensating anisotropy in histological serial sections with optical flow-based interpolation

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in
        • Published in

          cover image ACM Conferences
          SCCG '17: Proceedings of the 33rd Spring Conference on Computer Graphics
          May 2017
          163 pages
          ISBN:9781450351072
          DOI:10.1145/3154353

          Copyright © 2017 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 15 May 2017

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article

          Acceptance Rates

          Overall Acceptance Rate42of81submissions,52%

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader