skip to main content
10.1145/3158191.3158195acmotherconferencesArticle/Chapter ViewAbstractPublication PageseooltConference Proceedingsconference-collections
research-article

Equation-based modelling and simulation of hybrid systems

Published:01 December 2017Publication History

ABSTRACT

Equation-based 1 modelling of hybrid systems has to consider dynamical systems consisting of components with continuous and/or discrete behavior. The paper focuses on such systems under special consideration of systems with variable model structure. Some ideas are presented how a simulation of continuous and discrete phenomena can be handled correctly. The main process is a continuing alternation between continuous and discrete simulation phases, where in the discrete phase the changeover can be performed to a new model structure which is valid during the next continuous phase. The paper addresses the problem of finding a new valid model structure as a process within the discrete phase. This new valid model structure has to be found under consideration of the time history of the model's variables within the preceding continuous phase. To this end, the usage of the Linear Complementarity Problem (LCP) is proposed. After a definition of hybrid systems and the term model structure, different types of events - with and without influence on the model structure - are listed and properties of complementarity are presented. To find the correct switchover from continuous to discrete phase, so-called indicator functions are used. On the contrary, to find the correct switchover from discrete to continuous phase, the LCP is applied. Some simulation results for an electromechanical system are briefly presented.

References

  1. http://www.modelica.orgGoogle ScholarGoogle Scholar
  2. P. Fritzson. 2015. Principles of Object-Oriented Modeling and Simulation with Modelica 3.3 - A cyber-physical approach. IEEE Press and Wiley.Google ScholarGoogle Scholar
  3. Modelica Association. 2016. The Modelica Standard Library, Version 3.3.2, https://github.com/modelica/ModelicaGoogle ScholarGoogle Scholar
  4. Modelica Association. 2014. The Modelica Language Specification, Vers. 3.3, Rev. 1, https://www.modelica.org/documents/ModelicaSpec33Revision1.pdfGoogle ScholarGoogle Scholar
  5. F.E. Cellier, H. Elmqvist, M. Otter, J.H. Taylor. 1993. Guidelines for modeling and simulation of hybrid systems. IFAC World Congress, Sydney, Australia, Proc., vol. 8, pp. 391--397.Google ScholarGoogle ScholarCross RefCross Ref
  6. C. Glocker. 1995. Dynamik von Starrkörpersystemen mit Reibung und Stößen. Dissertation, Fortschrittberichte VDI, Reihe 18, Nr. 182, VDI-Verlag.Google ScholarGoogle Scholar
  7. D.A. van Beek, S.H.F. Gordijn, J.E. Rooda. 1997. Integrating Continuous-Time and Discrete-Event Concepts in Modelling and Simulation of Manufacturing Machines. Simulation Practice and Theory, vol. 5, pp. 653--669.Google ScholarGoogle ScholarCross RefCross Ref
  8. P.J. Mosterman, M. Otter, H. Elmqvist. 1998. Modeling Petri Nets as Local Constraint Equations for Hybrid Systems Using Modelica. SCS Summer Conference, Reno, Nevada, US, Proc, pp. 314--319.Google ScholarGoogle Scholar
  9. P. Mosterman. 1999. An overview of hybrid simulation phenomena and their support by simulation packages. HSCC 1999, Berg en Dal, The Netherlands, Proc, Springer LNCS 1569, pp. 165--177. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. D.A. van Beek, J.E. Rooda. 2000. Languages and Applications in Hybrid Modelling and Simulation: Positioning of Chi. Control Engineering Practice, vol. 8, no. 1, pp. 81--91.Google ScholarGoogle ScholarCross RefCross Ref
  11. T. Ernst, C. Klem-Robbenhaar, A. Nordwig, T. Schrag. 2000. Modellierung und Simulation hybrider Systeme mit Smile. Informatik Forsch Entw., Springer, 15: 33--50.Google ScholarGoogle Scholar
  12. H. Vangheluwe, J. de Lara, P.J. Mosterman. 2002. An Introduction to Multi-paradigm Modelling and Simulation. AIS'2002 Conference, Lisboa, Portugal, Proc., pp. 9--20.Google ScholarGoogle Scholar
  13. C. Nytsch-Geusen, T. Ernst, A. Nordwig, P. Schneider, P. Schwarz, M. Vetter, C. Wittwer, A. Holm, T. Nouidni, J. Leopold, G. Schmidt, U. Doll, A. Mattes. 2005. Mosilab: Development of a Modelica based generic simulation tool supporting model structural dynamics. 4th Int. Modelica Conf., Hamburg, Germany, Proc., pp. 527--535.Google ScholarGoogle Scholar
  14. C. Nytsch-Geusen, T. Ernst, A. Nordwig, P. Schneider, P. Schwarz, M. Vetter, C. Wittwer, A. Holm, T. Nouidni, J. Leopold, G. Schmidt, A. Mattes. 2006. Advanced modeling and simulation techniques in Mosilab: A system development case study. 5th Int. Modelica Conf., Vienna, Austria, Proc., pp. 63--71.Google ScholarGoogle Scholar
  15. A. Bemporad. 2009. Modeling And Control Of Hybrid Dynamical Systems: The Hybrid Toolbox For Matlab. MATHMOD, Vienna, Austria, Proc., pp. 82--100.Google ScholarGoogle Scholar
  16. D. Zimmer. 2010. Equation-Based Modeling of Variable-Structure Systems. Dissertation, Eidgenössische Technische Hochschule ETH Zürich, Switzerland.Google ScholarGoogle Scholar
  17. C. Höger. 2014. Dynamic structural analysis for DAEs. SCS Summer Simulation Multiconference. Proc. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. H. Elmqvist, F. Gaucher, S.E. Mattsson, F. Dupont. 2012. State Machines in Modelica. 9th Int. Modelica Conf., Munich, Germany, Proc., pp. 37--46.Google ScholarGoogle Scholar
  19. H. Elmqvist, S.E. Mattsson, M. Otter. 2014. Modelica extensions for Multi-Mode DAE Systems. 10th Int. Modelica Conf., Lund, Sweden, Proc., pp. 183--193.Google ScholarGoogle ScholarCross RefCross Ref
  20. S.E. Mattsson, M. Otter, H. Elmqvist. 2015. Multi-Mode DAE Systems with Varying Index. 11th Int. Modelica Conf., Versailles, France, Proc., pp. 89--98Google ScholarGoogle Scholar
  21. H. Elmqvist, T. Henningsson, M. Otter. 2017. Innovations for Future Modelica. 12th Int. Modelica Conf., Prague, Czech Republic. Proc., pp. 693--702.Google ScholarGoogle Scholar
  22. O. Enge. 2004. Modelling of electromechanical systems with variable structure using the linear complementarity problem. Int. J. of Applied Electromagnetics and Mechanics, 19(1-4):25--29.Google ScholarGoogle ScholarCross RefCross Ref
  23. O. Enge. 2005. Analyse und Synthese elektromechanischer Systeme. Dissertation, TU Chemnitz, Germany. Same: Shaker, Aachen, 2005 (ISBN 3-8322-4574-X).Google ScholarGoogle Scholar
  24. O. Enge, P. Maißer. 2005. Modelling electromechanical systems with electrical switching components using the linear complementarity problem. Journal Multibody System Dynamics, 13(4):421--445.Google ScholarGoogle ScholarCross RefCross Ref
  25. O. Enge, C. Clauß, P. Schneider, P. Schwarz, M. Vetter, S. Schwunk. 2006. Quasi-stationary AC analysis using phasor description with Modelica. 5th Int. Modelica Conf., Vienna, Austria, Proc., pp. 579--588.Google ScholarGoogle Scholar
  26. O. Enge-Rosenblatt, J. Bastian, C. Clauß, P. Schwarz. 2007. Numerical Simulation of Continuous Systems with Structural Dynamics. 6th EUROSIM Congress on Modelling and Simulation, Ljubljana, Slovenia. Proc. on CDROM.Google ScholarGoogle Scholar
  27. O. Enge-Rosenblatt, J. Bastian, C. Clauß, P. Schwarz. 2008. Numerical Simulation of Continuous Systems with Structural Dynamics. SNE - Simulation News Europe, 18(2):24--32.Google ScholarGoogle Scholar
  28. O. Enge-Rosenblatt, P. Schneider. 2008. Modelica Wind Turbine Models with Structural Changes Related to Different Operating Modes. 6th Int. Modelica Conf., Bielefeld, Germany. Proc., vol. 2, pp. 611--619.Google ScholarGoogle Scholar
  29. O. Enge-Rosenblatt, C. Clauß, P. Schneider, M. Vetter, S. Schwunk. 2009. ComplexLib - a Modelica library for steady-state analysis of AC circuits within phasor domain. 7th Int. Modelica Conf., Como, Italy, Libraries in Proceedings.Google ScholarGoogle Scholar
  30. F. Pfeifer, C. Glocker. 1996. Multibody dynamics with unilateral contacts. John Wiley & Sons.Google ScholarGoogle Scholar
  31. V. Acary, B. Brogliato. 2008. Numerical Methods for Nonsmooth Dynamical Systems. Springer.Google ScholarGoogle Scholar
  32. P. Lötstedt. 1979. A Numerical Method for the Simulation of Mechanical Systems With Unilateral Constraints (TRITA-NA-7920). Diss., The Royal Institute of Technology, Stockholm, Sweden.Google ScholarGoogle Scholar
  33. P. Lötstedt. 1981. Coulomb friction in two-dimensional rigid body friction. Z. Ang. Math. Mech., 61:605--615.Google ScholarGoogle ScholarCross RefCross Ref
  34. P. Lötstedt. 1982: Mechanical systems of rigid bodies subject to unilateral constraints. SIAM J. Appl. Math., 42:281--296.Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. E.J. Haug, S.C. Wu, S.M. Yang. 1986. Dynamics of mechanical systems with coulomb friction and constraint addition-deletion - I, II, III. Mechanism and Machine Theory, 21(5):401--425.Google ScholarGoogle ScholarCross RefCross Ref
  36. F. Pfeiffer. 1991. Dynamical systems with time-varying or unsteady structure. Z. Ang. Math. Mech., 71(4):T6--T22.Google ScholarGoogle Scholar
  37. C. Glocker, F. Pfeiffer. 1992. Dynamical systems with unilateral contacts. Nonlinear Dynamics, 3:245--259.Google ScholarGoogle ScholarCross RefCross Ref
  38. C. Glocker, F. Pfeiffer. 1992. An LCP-approach for multibody systems with planar friction. Contact Mechanics Int. Symposium, Lausanne, Switzerland, Proc., pp. 13--30.Google ScholarGoogle Scholar
  39. H.J. Klepp. 1992. Stopping check for systems with friction-affected constraints. Z. Ang. Math. Mech., 72(11):539--548.Google ScholarGoogle ScholarCross RefCross Ref
  40. C. Glocker, F. Pfeiffer. 1993. Complementarity problems in multibody systems with planar friction. Archive of Applied Mechanics, 63:452--463.Google ScholarGoogle Scholar
  41. F. Pfeiffer. 1993. Complementarity problems of stick-slip vibrations. Dynamics and Vibrations of Time-Varying Systems and Structures, DE-Vol. 56, ASME, pp. 43--50.Google ScholarGoogle Scholar
  42. C. Glocker, F. Pfeiffer. 1994. Stick-slip phenomena and applications. Nonlinearity and Chaos in Engineering Dynamics, John Wiley & Sons, Chichester, pp. 103--113.Google ScholarGoogle Scholar
  43. F. Pfeiffer. 1994. Methoden zur nichtlinearen Antriebstechnik. VDI-Berichte, Nr. 1153, VDI-Verlag, Düsseldorf, pp. 599--624.Google ScholarGoogle Scholar
  44. C. Glocker, F. Pfeiffer. 1995. Multiple impacts with friction in multibody systems. Nonlinear Dynamics, 7:471--497.Google ScholarGoogle ScholarCross RefCross Ref
  45. F. Pfeiffer. 1999. Unilateral problems in dynamics. Archive of Applied Mechanics, 69:503--527.Google ScholarGoogle ScholarCross RefCross Ref
  46. F. Pfeiffer. 2001. Applications of unilateral multibody dynamics. Philosophical Transactions: Mathematical, Physical and Engineering Sciences, 359(1789): 2609--2628.Google ScholarGoogle ScholarCross RefCross Ref
  47. F. Pfeiffer. 2003. The idea of complementarity in multibody dynamics. Archive of Applied Mechanics, 72(11-12): 807--816.Google ScholarGoogle ScholarCross RefCross Ref
  48. S.N. Stevens, P.-M. Lin. 1981. Analysis of piecewise-linear resistive networks using complementary pivot theory. IEEE Trans. Circuits Systems, 28:429--441.Google ScholarGoogle ScholarCross RefCross Ref
  49. J.T.J, van Eyndhoven. 1986. Solving the linear complementarity problem in circuit simulation. SIAM J. Control Opt., 24:1050--1062. Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. Y.J. Lootsma, A.J. van der Schaft, M.K. Camlibel. 1999. Uniqueness of solutions of linear relay systems. Automatica, 35:467--478. Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. C.E. Lemke. 1970. Recent results on complementarity problems. Nonlinear Programming, American Mathematical Society, pp. 349--384.Google ScholarGoogle Scholar
  52. C.E. Lemke. 1980. A survey of complementarity theory. Variational Inequalities and Complementarity Problems, John Wiley & Sons, pp. 213--239.Google ScholarGoogle Scholar
  53. K.G. Murty. 1988. Linear Complementarity, Linear and Nonlinear Programming. Sigma Series in Applied Mathematics 3. Heldermann, Berlin.Google ScholarGoogle Scholar
  54. R.W. Cottle, J.-S. Pang, R.E. Stone. 1992. The Linear Complementarity Problem. Academic Press, Boston.Google ScholarGoogle Scholar
  55. F.A. Al-Khayyal. 1987. An implicit enumeration procedure for the general linear complementarity problem. Mathematical Programming Study, 31:1--20.Google ScholarGoogle ScholarCross RefCross Ref
  56. O. Enge, G. Kielau, P. Maißer. 1995. Dynamiksimulation elektromechanischer Systeme. Fortschrittberichte VDI, Reihe 20, Nr. 165, VDI-Verlag, Düsseldorf.Google ScholarGoogle Scholar
  57. H. Freudenberg, P. Maißer. 2000. Analyse und Optimierung mechatronischer Systeme mit alaska. 1. Tagung Simulation im Maschinenbau - Softwaretools und Anwendungen in Lehre, Forschung und Praxis (STM2000), Dresden, Germany, Tagungsband 1, pp. 101--114.Google ScholarGoogle Scholar
  58. M. Berger (Ed.). 2016. 8th Saxon Simulation Meeting. Proc. of the 8th alaska User Meeting, Chemnitz, Germany, Universitätsverlag Chemnitz.Google ScholarGoogle Scholar
  59. Reference Manual alaska 9.4. 2017. Institut für Mechatronik e.V., Chemnitz, Germany.Google ScholarGoogle Scholar
  60. https://www.ifm-chemnitz.de/en/products/dynamic-simulation/alaskamodellerstudio/Google ScholarGoogle Scholar

Recommendations

Comments

Login options

Check if you have access through your login credentials or your institution to get full access on this article.

Sign in
  • Published in

    cover image ACM Other conferences
    EOOLT '17: Proceedings of the 8th International Workshop on Equation-Based Object-Oriented Modeling Languages and Tools
    December 2017
    95 pages
    ISBN:9781450363730
    DOI:10.1145/3158191
    • General Chair:
    • Dirk Zimmer,
    • Program Chair:
    • Bernhard Bachmann

    Copyright © 2017 ACM

    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    • Published: 1 December 2017

    Permissions

    Request permissions about this article.

    Request Permissions

    Check for updates

    Qualifiers

    • research-article

    Acceptance Rates

    Overall Acceptance Rate10of11submissions,91%
  • Article Metrics

    • Downloads (Last 12 months)1
    • Downloads (Last 6 weeks)0

    Other Metrics

PDF Format

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader