skip to main content
10.1145/3159652.3159710acmconferencesArticle/Chapter ViewAbstractPublication PageswsdmConference Proceedingsconference-collections
research-article
Public Access
Best Student Paper

A Path-constrained Framework for Discriminating Substitutable and Complementary Products in E-commerce

Published:02 February 2018Publication History

ABSTRACT

In personalized recommendation, candidate generation plays an infrastructural role by retrieving candidates out of billions of items. During this process, substitutes and complements constitute two main classes of retrieved candidates: substitutable products are interchangeable, whereas complementary products might be purchased together by users. Discriminating substitutable and complementary products is playing an increasingly important role in e-commerce portals by affecting the performance of candidate generation, e.g., when a user has browsed a t-shirt, it is reasonable to retrieve similar t-shirts, i.e., substitutes; whereas if the user has already purchased one, it would be better to retrieve trousers, hats or shoes, as complements of t-shirts. In this paper, we propose a path-constrained framework (PMSC) for discriminating substitutes and complements. Specifically, for each product, we first learn its embedding representations in a general semantic space. Thereafter, we project the embedding vectors into two separate spaces via a novel mapping function. In the end, we incorporate each embedding with path-constraints to further boost the discriminative ability of the model. Extensive experiments conducted on two e-commerce datasets show the effectiveness of our proposed method.

References

  1. O. Barkan. Bayesian neural word embedding. In AAAI, pages 3135--3143, 2017.Google ScholarGoogle Scholar
  2. O. Barkan and N. Koenigstein. Item2vec: neural item embedding for collaborative filtering. In International Workshop on Machine Learning for Signal Processing, pages 1--6, 2016.Google ScholarGoogle ScholarCross RefCross Ref
  3. R. M. Bell and Y. Koren. Improved neighborhood-based collaborative filtering. In KDD Cup and Workshop at the KDD, 2007.Google ScholarGoogle Scholar
  4. H.-T. Cheng, L. Koc, J. Harmsen, T. Shaked, T. Chandra, H. Aradhye, G. Anderson, G. Corrado, W. Chai, M. Ispir, et al. Wide & deep learning for recommender systems. In Proceedings of the 1st Workshop on Deep Learning for Recommender Systems, pages 7--10, 2016. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. R. Collobert and J. Weston. A unified architecture for natural language processing: Deep neural networks with multitask learning. In ICML, pages 160--167, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. P. Covington, J. Adams, and E. Sargin. Deep neural networks for youtube recommendations. In ACM RecSys, pages 191--198, 2016. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. F. Gelli, X. He, T. Chen, and T.-S. Chua. How personality affects our likes: Towards a better understanding of actionable images. In MM, 2017. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. k(1998)}hajek1998metamathematicsP. Hájek. Metamathematics of fuzzy logic, volume 4. Springer, 1998.Google ScholarGoogle ScholarCross RefCross Ref
  9. He, Packer, and Mcauley}he2016learningR. He, C. Packer, and J. Mcauley. Learning compatibility across categories for heterogeneous item recommendation. In IEEE International Conference on Data Mining, pages 937--942, 2017 a.Google ScholarGoogle Scholar
  10. He, Liao, Zhang, Nie, Hu, and Chua}he2017neuralX. He, L. Liao, H. Zhang, L. Nie, X. Hu, and T.-S. Chua. Neural collaborative filtering. In WWW, pages 173--182, 2017 b. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. N. Koenigstein, G. Dror, and Y. Koren. Yahoo! music recommendations: modeling music ratings with temporal dynamics and item taxonomy. In ACM RecSys, pages 165--172, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Y. Koren and R. Bell. Advances in collaborative filtering. In Recommender systems handbook, pages 145--186. Springer, 2011.Google ScholarGoogle ScholarCross RefCross Ref
  13. Y. Koren, R. Bell, and C. Volinsky. Matrix factorization techniques for recommender systems. Computer, 42 (8): 30--37, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. D. D. Lee and H. S. Seung. Learning the parts of objects by non-negative matrix factorization. Nature, 401 (6755): 788, 1999.Google ScholarGoogle ScholarCross RefCross Ref
  15. D. D. Lee and H. S. Seung. Algorithms for non-negative matrix factorization. In NIPS, pages 556--562, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. J. Li, P. Ren, Z. Chen, Z. Ren, T. Lian, and J. Ma. Neural attentive session-based recommendation. In CIKM, 2017. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. G. Linden, B. Smith, and J. York. Amazon. com recommendations: Item-to-item collaborative filtering. IEEE Internet computing, 7 (1): 76--80, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. D. C. Liu, S. Rogers, R. Shiau, D. Kislyuk, K. C. Ma, Z. Zhong, J. Liu, and Y. Jing. Related pins at pinterest: The evolution of a real-world recommender system. In WWW Companion, pages 583--592, 2017. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. P. Lops, M. D. Gemmis, and G. Semeraro. Content-based Recommender Systems: State of the Art and Trends. Springer, 2011.Google ScholarGoogle Scholar
  20. Y. Ma, Z. Ren, Z. Jiang, J. Tang, and D. Yin. Multi-dimensional network embedding with hierarchical structures. In WSDM, 2018. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. L. v. d. Maaten and G. Hinton. Visualizing data using t-sne. Journal of Machine Learning Research, 9 (Nov): 2579--2605, 2008.Google ScholarGoogle Scholar
  22. J. McAuley and J. Leskovec. Hidden factors and hidden topics: understanding rating dimensions with review text. In ACM RecSys, pages 165--172, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. J. McAuley, R. Pandey, and J. Leskovec. Inferring networks of substitutable and complementary products. In KDD, pages 785--794. ACM, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. Distributed representations of words and phrases and their compositionality. In NIPS, pages 3111--3119, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. A. Mnih and G. E. Hinton. A scalable hierarchical distributed language model. In NIPS, pages 1081--1088, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. S.-T. Park and W. Chu. Pairwise preference regression for cold-start recommendation. In ACM RecSys, pages 21--28, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, and J. Riedl. Grouplens: an open architecture for collaborative filtering of netnews. In ACM Conference on Computer Supported Cooperative Work, pages 175--186, 1994. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. B. Sarwar, G. Karypis, J. Konstan, and J. Riedl. Item-based collaborative filtering recommendation algorithms. In WWW, pages 285--295, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. A. I. Schein, A. Popescul, L. H. Ungar, and D. M. Pennock. Methods and metrics for cold-start recommendations. In SIGIR, pages 253--260, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Y. Shi, A. Karatzoglou, L. Baltrunas, M. Larson, N. Oliver, and A. Hanjalic. Climf: learning to maximize reciprocal rank with collaborative less-is-more filtering. In ACM RecSys, pages 139--146, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. X. Su and T. M. Khoshgoftaar. A survey of collaborative filtering techniques. Hindawi Publishing Corp., 2009.Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Z. Sun, J. Yang, J. Zhang, and A. Bozzon. Exploiting both vertical and horizontal dimensions of feature hierarchy for effective recommendation. In AAAI, pages 189--195, 2017.Google ScholarGoogle Scholar
  33. }titov2008modelingI. Titov and R. McDonald. Modeling online reviews with multi-grain topic models. In WWW, pages 111--120, 2008 a. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. }titov2008jointI. Titov and R. T. McDonald. A joint model of text and aspect ratings for sentiment summarization. In ACL, pages 308--316, 2008 b.Google ScholarGoogle Scholar
  35. C. Wang and D. M. Blei. Collaborative topic modeling for recommending scientific articles. In KDD, pages 448--456, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. P. Wang, J. Guo, Y. Lan, J. Xu, and X. Cheng. Your cart tells you: Inferring demographic attributes from purchase data. In WSDM, pages 173--182, 2016. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. X. Yi, L. Hong, E. Zhong, N. N. Liu, and S. Rajan. Beyond clicks: dwell time for personalization. In ACM RecSys, pages 113--120, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Y. Zhang, M. Zhang, Y. Liu, S. Ma, and S. Feng. Localized matrix factorization for recommendation based on matrix block diagonal forms. In WWW, pages 1511--1520, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. J. Zheng, X. Wu, J. Niu, and A. Bolivar. Substitutes or complements: another step forward in recommendations. In Proceedings of the 10th ACM conference on Electronic commerce, pages 139--146, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. K. Zhou, S.-H. Yang, and H. Zha. Functional matrix factorizations for cold-start recommendation. In SIGIR, pages 315--324, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. M. Zhou, Z. Ding, J. Tang, and D. Yin. Micro behaviors: A new perspective in e-commerce recommender systems. In WSDM, 2018. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. A Path-constrained Framework for Discriminating Substitutable and Complementary Products in E-commerce

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      WSDM '18: Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining
      February 2018
      821 pages
      ISBN:9781450355810
      DOI:10.1145/3159652

      Copyright © 2018 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 2 February 2018

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      WSDM '18 Paper Acceptance Rate81of514submissions,16%Overall Acceptance Rate498of2,863submissions,17%

      Upcoming Conference

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader