skip to main content
research-article

Enabling Interactive Infrastructure with Body Channel Communication

Published:08 January 2018Publication History
Skip Abstract Section

Abstract

Body channel communication (BCC) uses the human body to carry signals, and therefore provides communication and localization that are directly tied to human presence and actions. Previous BCC systems were expensive, could operate only in a laboratory, or only focused on special use cases. We present here an end-to-end BCC system that is designed for ambient intelligence. We introduce the BCC infrastructure that consists of portable devices (e.g., a simple sphere), mobile devices (e.g., a smartwatch-like wristband), and stationary devices (e.g., floor/wall tiles). We also describe the core technology that is used in each of these units. The TouchCom hardware-software platform is a simple transceiver with software-centered processing. The focus on software (even the implementation of the physical layer is based on software) allows the adaptivity that is necessary to operate a BCC-based system in practice. The paper describes the design and a prototype implementation of the TouchCom-based interactive infrastructure and provides evidence that this BCC infrastructure works for different persons and different setups. The system provides moderate bandwidth (about 3.5 kb/s) that is suitable for several usage scenarios like games, localization, and identification. The implemented demonstrations illustrate the benefits these applications gain when touching an object is tied to communication.

Skip Supplemental Material Section

Supplemental Material

References

  1. ICNIRP Guidelines for Limiting Exposure to Time-Varying Electric, Magnetic and Electromagnetic Fields (Up to 300 GHz). HEALTH PHYSICS, 74:494--522, 1998.Google ScholarGoogle Scholar
  2. libopencm3 - a free/libre/open-source firmware library for various ARM Cortex-M0(+)/M3/M4 microcontrollers. Website, 11 2015. http://libopencm3.org/wiki/Main_Page.Google ScholarGoogle Scholar
  3. Introduction to the BodyCom Technology. Website, 09 2016. http://ww1.microchip.com/downloads/en/AppNotes/01391A.pdf.Google ScholarGoogle Scholar
  4. Lumo Play. Website, 05 2017. http://www.lumoplay.com/help/setup-guides.Google ScholarGoogle Scholar
  5. WizeFloor. Website, 05 2017. https://www.wizefloor.com/index.php?Hardware/78.Google ScholarGoogle Scholar
  6. M. D. Addlesee, A. Jones, F. Livesey, and F. Samaria. The orl active floor [sensor system]. IEEE Personal Communications, 4(5):35--41, 1997. Google ScholarGoogle ScholarCross RefCross Ref
  7. M. Alwan, P. J. Rajendran, S. Kell, D. Mack, S. Dalal, M. Wolfe, and R. Felder. A smart and passive floor-vibration based fall detector for elderly. In 2006 2nd International Conference on Information Communication Technologies, volume 1, pages 1003--1007, 2006. Google ScholarGoogle ScholarCross RefCross Ref
  8. J. Bae, H. Cho, K. Song, H. Lee, and H.-J. Yoo. The Signal Transmission Mechanism on the Surface of Human Body for Body Channel Communication. Microwave Theory and Techniques, IEEE Transactions on, 60(3):582--593, March 2012.Google ScholarGoogle Scholar
  9. J. Bae, K. Song, H. Cho, H. Lee, and H.-J. Yoo. An Energy-Efficient Body Channel Communication based on Maxwell's Equations Analysis of On-Body Transmission Mechanism. In Medical Information and Communication Technology (ISMICT), 2012 6th International Symposium on, pages 1--5, March 2012. Google ScholarGoogle ScholarCross RefCross Ref
  10. H. Baldus, S. Corroy, A. Fazzi, K. Klabunde, and T. Schenk. Human-Centric Connectivity Enabled by Body-Coupled Communications. Communications Magazine, IEEE, 47(6):172--178, June 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. A. Bränzel, C. Holz, D. Hoffmann, D. Schmidt, M. Knaust, P. Lühne, R. Meusel, S. Richter, and P. Baudisch. Gravityspace: Tracking users and their poses in a smart room using a pressure-sensing floor. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI‘13, pages 725--734, New York, NY, USA, 2013. ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. A. Braun, H. Heggen, and R. Wichert. Capfloor--a flexible capacitive indoor localization system. In International Competition on Evaluating AAL Systems through Competitive Benchmarking, pages 26--35. Springer, 2011.Google ScholarGoogle Scholar
  13. S. Chang, S. Ham, K. Seungbum, S. Dongjun, and K. Hyunseok. Ubi-floor: Design and pilot implementation of an interactive floor system. In 2010 Second International Conference on Intelligent Human-Machine Systems and Cybernetics, volume 2, pages 290--293, Aug 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. P. Dietz and D. Leigh. Diamondtouch: A multi-user touch technology. In Proceedings of the 14th Annual ACM Symposium on User Interface Software and Technology, UIST‘01, pages 219--226, New York, NY, USA, 2001. ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. A. Fazzi, S. Ouzounov, and J. van den Homberg. A 2.75mW Wideband Correlation-Based Transceiver for Body-Coupled Communication. In IEEE International Solid-State Circuits Conference (ISSCC), 2009. Digest of Technical Papers, pages 204--205,205a, Feb 2009.Google ScholarGoogle Scholar
  16. M. Fukumoto and M. Shinagawa. CarpetLAN: A novel indoor wireless(-like) networking and positioning system. In UbiComp 2005: Ubiquitous Computing, 7th International Conference, UbiComp 2005, Tokyo, Japan, September 11--14, 2005, Proceedings, pages 1--18. Springer, 2005.Google ScholarGoogle Scholar
  17. S. Gilbert. Please turn on your phone in the museum. The Atlantic, 318(3):32--33, Oct. 2016.Google ScholarGoogle Scholar
  18. N. Griffith and M. Fernström. Litefoot-a floor space for recording dance and controlling media. In ICMC, 1998.Google ScholarGoogle Scholar
  19. K. Grønbæk, O. Iversen, K. Kortbek, K. Nielsen, and L. Aagaard. Interactive floor support for kinesthetic interaction in children learning environments. Human-Computer Interaction--INTERACT 2007, pages 361--375, 2007. Google ScholarGoogle ScholarCross RefCross Ref
  20. T. Grosse-Puppendahl, X. Dellangnol, C. Hatzfeld, B. Fu, M. Kupnik, A. Kuijper, M. R. Hastall, J. Scott, and M. Gruteser. Platypus: Indoor localization and identification through sensing of electric potential changes in human bodies. In Proceedings of the 14th Annual International Conference on Mobile Systems, Applications, and Services, MobiSys‘16, pages 17--30, New York, NY, USA, 2016. ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. T. Grosse-Puppendahl, S. Herber, R. Wimmer, F. Englert, S. Beck, J. von Wilmsdorff, R. Wichert, and A. Kuijper. Capacitive Near-field Communication for Ubiquitous Interaction and Perception. In Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing, UbiComp‘14, pages 231--242, New York, NY, USA, 2014. ACM.Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. S. Han, H. Lim, and J. Lee. An efficient localization scheme for a differential-driving mobile robot based on rfid system. IEEE Transactions on Industrial Electronics, 54(6):3362--3369, Dec 2007. Google ScholarGoogle ScholarCross RefCross Ref
  23. P. Harikumar, M. I. Kazim, and J. J. Wikner. An analog receiver front-end for capacitive body-coupled communication. In NORCHIP 2012, pages 1--4, Nov 2012. Google ScholarGoogle ScholarCross RefCross Ref
  24. S. Helal, W. Mann, H. El-Zabadani, J. King, Y. Kaddoura, and E. Jansen. The gator tech smart house: A programmable pervasive space. Computer, 38(3):50--60, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. M. Hessar, V. Iyer, and S. Gollakota. Enabling on-body transmissions with commodity devices. In Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing, UbiComp‘16, pages 1100--1111, New York, NY, USA, 2016. ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. L. E. Hoeg and M. M. Eriksen. CapFloor: An Interactive Luminous Floor Using Capacitive Sensing. Master's thesis, Aarhus Universitet, 2016.Google ScholarGoogle Scholar
  27. C. Holz and M. Knaust. Biometric Touch Sensing: Seamlessly Augmenting Each Touch with Continuous Authentication. In Proceedings of the 28th Annual ACM Symposium on User Interface Software 8 Technology, UIST‘15, pages 303--312, New York, NY, USA, 2015. ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. J. Hvizdos, J. Vascak, and A. Brezina. Object identification and localization by smart floors. In 2015 IEEE 19th International Conference on Intelligent Engineering Systems (INES), pages 113--117, Sept 2015. Google ScholarGoogle ScholarCross RefCross Ref
  29. O. S. Iversen, K. J. Kortbek, K. R. Nielsen, and L. Aagaard. Stepstone: An interactive floor application for hearing impaired children with a cochlear implant. In Proceedings of the 6th International Conference on Interaction Design and Children, IDC‘07, pages 117--124, New York, NY, USA, 2007. ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Y. Kado. Human-area networking technology as a universal interface. In VLSI Circuits, 2009 Symposium on, pages 102--105. IEEE, 2009.Google ScholarGoogle Scholar
  31. P. Keyani, G. Hsieh, B. Mutlu, M. Easterday, and J. Forlizzi. Dancealong: Supporting positive social exchange and exercise for the elderly through dance. In CHI‘05 Extended Abstracts on Human Factors in Computing Systems, CHI EA‘05, pages 1541--1544, New York, NY, USA, 2005. ACM.Google ScholarGoogle Scholar
  32. C. D. Kidd, R. Orr, G. D. Abowd, C. G. Atkeson, I. A. Essa, B. MacIntyre, E. Mynatt, T. E. Starner, and W. Newstetter. The aware home: A living laboratory for ubiquitous computing research. In International Workshop on Cooperative Buildings, pages 191--198. Springer, 1999. Google ScholarGoogle ScholarCross RefCross Ref
  33. L. Klack, C. Möllering, M. Ziefle, and T. Schmitz-Rode. Future care floor: a sensitive floor for movement monitoring and fall detection in home environments. In International Conference on Wireless Mobile Communication and Healthcare, pages 211--218. Springer, 2010.Google ScholarGoogle Scholar
  34. P. Krogh, M. Ludvigsen, and A. Lykke-Olesen. “help me pull that cursor” a collaborative interactive floor enhancing community interaction. Australasian Journal of Information Systems, 11(2), 2004. Google ScholarGoogle ScholarCross RefCross Ref
  35. S. Lee, K. N. Ha, and K. C. Lee. A pyroelectric infrared sensor-based indoor location-aware system for the smart home. IEEE Transactions on Consumer Electronics, 52(4):1311--1317, Nov 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. T. Leng, Z. Nie, W. Wang, F. Guan, and L. Wang. A human body communication transceiver based on on-off keying modulation. In International Symposium on Bioelectronics and Bioinformations 2011, pages 61--64, Nov 2011. Google ScholarGoogle ScholarCross RefCross Ref
  37. Z. Lucev, I. Krois, and M. Cifrek. A Capacitive Intrabody Communication Channel from 100 kHz to 100 MHz. Instrumentation and Measurement, IEEE Transactions on, 61(12):3280--3289, Dec 2012.Google ScholarGoogle Scholar
  38. H. H. Lund, T. Klitbo, and C. Jessen. Playware technology for physically activating play. Artificial life and Robotics, 9(4):165--174, 2005. Google ScholarGoogle ScholarCross RefCross Ref
  39. R. J. S. Matias, M. B. Cunha, A. M. Mota, and R. M. Martins. Modeling capacitive coupling systems for body coupled communications. In Proceedings of the 7th International Conference on Body Area Networks, BodyNets‘12, pages 113--119, ICST, Brussels, Belgium, Belgium, 2012. ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering). Google ScholarGoogle ScholarCross RefCross Ref
  40. N. Matsushita, S. Tajima, Y. Ayatsuka, and J. Rekimoto. Wearable Key: Device for Personalizing Nearby Environment. In Wearable Computers, The Fourth International Symposium on, pages 119--126, Oct 2000.Google ScholarGoogle Scholar
  41. L. Middleton, A. A. Buss, A. Bazin, and M. S. Nixon. A floor sensor system for gait recognition. In Automatic Identification Advanced Technologies, 2005. Fourth IEEE Workshop on, pages 171--176. IEEE, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. J. Müller, D. Eberle, and C. Schmidt. Baselase: An interactive focus+context laser floor. In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, CHI‘15, pages 3869--3878, New York, NY, USA, 2015. ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. R. J. Orr and G. D. Abowd. The smart floor: A mechanism for natural user identification and tracking. In CHI‘00 Extended Abstracts on Human Factors in Computing Systems, CHI EA‘00, pages 275--276, New York, NY, USA, 2000. ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. J. Paradiso, C. Abler, K.-y. Hsiao, and M. Reynolds. The magic carpet: Physical sensing for immersive environments. In CHI‘97 Extended Abstracts on Human Factors in Computing Systems, CHI EA‘97, pages 277--278, New York, NY, USA, 1997. ACM.Google ScholarGoogle Scholar
  45. D. G. Park, J. K. Kim, J. B. Sung, J. H. Hwang, C. H. Hyung, and S. W. Kang. Tap: Touch-and-play. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI‘06, pages 677--680, New York, NY, USA, 2006. ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. K. Partridge, B. Dahlquist, A. Veiseh, A. Cain, A. Foreman, J. Goldberg, and G. Borriello. Empirical Measurements of Intrabody Communication Performance Under Varied Physical Configurations. In Proceedings of the 14th Annual ACM Symposium on User Interface Software and Technology, UIST‘01, pages 183--190, New York, NY, USA, 2001. ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. R. F. Pinkston. A touch sensitive dance floor/midi controller. The Journal of the Acoustical Society of America, 96(5):3302--3302, 1994. Google ScholarGoogle ScholarCross RefCross Ref
  48. B. Richardson, K. Leydon, M. Fernstrom, and J. A. Paradiso. Z-tiles: Building blocks for modular, pressure-sensing floorspaces. In CHI ‘04 Extended Abstracts on Human Factors in Computing Systems, CHI EA‘04, pages 1529--1532, New York, NY, USA, 2004. ACM.Google ScholarGoogle Scholar
  49. A.-I. Sasaki, M. Shinagawa, and K. Ochiai. Principles and Demonstration of Intrabody Communication With a Sensitive Electrooptic Sensor. Instrumentation and Measurement, IEEE Transactions on, 58(2):457--466, Feb 2009.Google ScholarGoogle Scholar
  50. T. C. W. Schenk, N. S. Mazloum, L. Tan, and P. Rutten. Experimental Characterization of the Body-Coupled Communications Channel. In Wireless Communication Systems (ISWCS), 2008. IEEE International Symposium on, pages 234--239, Oct 2008. Google ScholarGoogle ScholarCross RefCross Ref
  51. M. Seyedi, Z. Cai, and D. Lai. Characterization of Signal Propagation through Limb Joints for Intrabody Communication. International Journal of Biomaterials Research and Engineering, 1(2):1--12, 2011. Google ScholarGoogle ScholarCross RefCross Ref
  52. M. Seyedi, B. Kibret, D. T. H. Lai, and M. Faulkner. A Survey on Intrabody Communications for Body Area Network Applications. Biomedical Engineering, IEEE Transactions on, 60(8):2067--2079, Aug 2013.Google ScholarGoogle Scholar
  53. M. Shinagawa, M. Fukumoto, K. Ochiai, and H. Kyuragi. A Near-Field-Sensing Transceiver for Intrabody Communication Based on the Electrooptic Effect. Instrumentation and Measurement, IEEE Transactions on, 53(6):1533--1538, Dec 2004.Google ScholarGoogle Scholar
  54. S.-J. Song, N. Cho, and H.-J. Yoo. A 0.2-mw 2-mb/s digital transceiver based on wideband signaling for human body communications. IEEE Journal of Solid-State Circuits, 42(9):2021--2033, Sept 2007. Google ScholarGoogle ScholarCross RefCross Ref
  55. M. Sousa, A. Techmer, A. Steinhage, C. Lauterbach, and P. Lukowicz. Human tracking and identification using a sensitive floor and wearable accelerometers. In 2013 IEEE International Conference on Pervasive Computing and Communications (PerCom), pages 166--171, March 2013. Google ScholarGoogle ScholarCross RefCross Ref
  56. P. Srinivasan, D. Birchfield, G. Qian, and A. Kidané. A pressure sensing floor for interactive media applications. In Proceedings of the 2005 ACM SIGCHI International Conference on Advances in Computer Entertainment Technology, ACE‘05, pages 278--281, New York, NY, USA, 2005. ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  57. M. Takahashi, C. L. Fernando, Y. Kumon, S. Takeda, H. Nii, T. Tokiwa, M. Sugimoto, and M. Inami. Earthlings attack!: A ball game using human body communication. In Proceedings of the 2Nd Augmented Human International Conference, AH‘11, pages 17:1--17:4, New York, NY, USA, 2011. ACM.Google ScholarGoogle ScholarDigital LibraryDigital Library
  58. R. Ulyate and D. Bianciardi. The interactive dance club: Avoiding chaos in a multi-participant environment. Computer music journal, 26(3):40--49, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  59. M. Valtonen, J. Maentausta, and J. Vanhala. Tiletrack: Capacitive human tracking using floor tiles. In 2009 IEEE International Conference on Pervasive Computing and Communications, pages 1--10, March 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  60. M. Valtonen, T. Vuorela, L. Kaila, and J. Vanhala. Capacitive indoor positioning and contact sensing for activity recognition in smart homes. Journal of Ambient Intelligence and Smart Environments, 4(4):305--334, 2012.Google ScholarGoogle ScholarDigital LibraryDigital Library
  61. T. Vu, A. Baid, S. Gao, M. Gruteser, R. Howard, J. Lindqvist, P. Spasojevic, and J. Walling. Capacitive touch communication: A technique to input data through devices' touch screen. IEEE Transactions on Mobile Computing, 13(1):4--19, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  62. M. S. Wegmüller. Intra-Body Communication for Biomedical Sensor Networks. PhD thesis, ETH Zurich, 2007.Google ScholarGoogle Scholar
  63. R. Xu, W. C. Ng, H. Zhu, H. Shan, and J. Yuan. Equation environment coupling and interference on the electric-field intrabody communication channel. IEEE Transactions on biomedical engineering, 59(7):2051--2059, 2012. Google ScholarGoogle ScholarCross RefCross Ref
  64. Y. Zhang, J. Zhou, G. Laput, and C. Harrison. Skintrack: Using the body as an electrical waveguide for continuous finger tracking on the skin. In Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems, CHI‘16, pages 1491--1503, New York, NY, USA, 2016. ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  65. T. G. Zimmerman. Personal Area Networks (PAN): Near-Field Intra-Body Communication. Master's thesis, Massachusetts Institute of Technology, 1995.Google ScholarGoogle Scholar
  66. T. G. Zimmerman. Personal Area Networks: Near-field Intrabody Communication. IBM Syst. J., 35(3-4):609--617, Sept. 1996. Google ScholarGoogle ScholarDigital LibraryDigital Library
  67. F. Zünd, M. Ryffel, S. Magnenat, A. Marra, M. Nitti, M. Kapadia, G. Noris, K. Mitchell, M. Gross, and R. W. Sumner. Augmented creativity: Bridging the real and virtual worlds to enhance creative play. In SIGGRAPH Asia 2015 Mobile Graphics and Interactive Applications, SA ‘15, pages 21:1--21:7, New York, NY, USA, 2015. ACM.Google ScholarGoogle Scholar

Index Terms

  1. Enabling Interactive Infrastructure with Body Channel Communication

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies
          Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies  Volume 1, Issue 4
          December 2017
          1298 pages
          EISSN:2474-9567
          DOI:10.1145/3178157
          Issue’s Table of Contents

          Copyright © 2018 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 8 January 2018
          • Accepted: 1 October 2017
          • Revised: 1 August 2017
          • Received: 1 May 2017
          Published in imwut Volume 1, Issue 4

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article
          • Research
          • Refereed

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader