skip to main content
10.1145/3167132.3167343acmconferencesArticle/Chapter ViewAbstractPublication PagessacConference Proceedingsconference-collections
research-article

Fuzzy ontologies for search results diversification: application to medical data

Published: 09 April 2018 Publication History

Abstract

Fuzzy ontologies offer an efficient representation of uncertain information in natural language and this representation allows a better interpretation of user queries and documents. Integrating fuzzy ontologies in a search results diversification process may improve the quality of returned documents since diversification helps covering the maximum of user's needs. In this context, we propose an ontology based diversification approach for search results applied to medical domain. The proposal first analyses the query in order to extract medical concepts. A contextual ontology fuzzification is then applied in order to offer an understanding of the user's information needs and finally a fuzzy search result diversification is performed in order to improve the ranking quality of returned documents. We perform a thorough experimental evaluation of our proposal with CLEF e-health 2016 topics. Evaluation results show a major improvement in precision and ranking.

References

[1]
R. Agrawal, S. Gollapudi, A. Halverson, and S. Ieong. Diversifying search results. In Proceedings of the Second ACM International Conference on Web Search and Data Mining, WSDM '09, pages 5--14, New York, NY, USA, 2009. ACM.
[2]
H. Baazaoui-Zghal and H. Ben Ghezala. A fuzzy-ontology-driven method for a personalized query reformulation. In FUZZ-IEEE 2014, IEEE International Conference on Fuzzy Systems, 2014.
[3]
G. Besbes, M. R. Haddad, and H. B. Zghal. An ontology-based integrated architecture for personalised information search and recommendation. IJMSO, 11(4):221--230, 2016.
[4]
G. Besbes and H. B. Zghal. Fuzzy ontology-based medical information retrieval. In 2016 IEEE International Conference on Fuzzy Systems, FUZZ-IEEE 2016, Vancouver, BC, Canada, July 24-29, 2016, pages 178--185, 2016.
[5]
F. Bobillo and U. Straccia. Fuzzy ontology representation using owl 2. Int. J. Approx. Reasoning, 52(7):1073--1094, 2011.
[6]
S. Calegari and D. Ciucci. Granular computing applied to ontologies. International Journal of Approximate Reasoning, 51(4):391 -- 409, 2010.
[7]
S. Calegari and G. Pasi. Gronto: A granular ontology for diversifying search results. In M. Melucci, S. Mizzaro, and G. Pasi, editors, IIR, volume 560 of CEUR Workshop Proceedings, pages 59--63. CEUR-WS.org, 2010.
[8]
F. Corcoglioniti, M. Dragoni, M. Rospocher, and A. P. Aprosio. Knowledge Extraction for Information Retrieval, pages 317--333. Springer International Publishing, Cham, 2016.
[9]
M. Dragoni, A. Rexha, H. Ziak, and R. Kern. A semantic federated search engine for domain-specific document retrieval. In Proceedings of the Symposium on Applied Computing, SAC '17, pages 303--308, New York, NY, USA, 2017. ACM.
[10]
C. Gavankar, Y.-F. Li, and G. Ramakrishnan. Explicit Query Interpretation and Diversification for Context-Driven Concept Search Across Ontologies, pages 271--288. Springer International Publishing, Cham, 2016.
[11]
B. Ionescu, A. Popescu, A.-L. Radu, and H. Müller. Result diversification in social image retrieval: a benchmarking framework. Multimedia Tools and Applications, 75(2):1301--1331, 2016.
[12]
M. Koniaris, I. Anagnostopoulos, and Y. Vassiliou. Multi-dimension Diversification in Legal Information Retrieval, pages 174--189. Springer International Publishing, Cham, 2016.
[13]
J. Li, C. Liu, B. Liu, R. Mao, Y. Wang, S. Chen, J.-J. Yang, H. Pan, and Q. Wang. Diversity-aware retrieval of medical records. Comput. Ind., 69(C):81--91, May 2015.
[14]
T. Ruotsalo and M. Frosterus. Semantic entity search diversification. In 2013 IEEE Seventh International Conference on Semantic Computing, pages 32--39, Sept 2013.
[15]
U. Straccia. Reasoning within fuzzy description logics. J. Artif. Intell. Res. (JAIR), 14:137--166, 2001.
[16]
V. Sudha and E. Kalaimani. Efficient diversity aware retrieval system for handling medical queries. IJRET: International Journal of Research in Engineering and Technology, 5:344--350, 2016.
[17]
D. Vallet and P. Castells. Personalized diversification of search results. In Proceedings of the 35th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR '12, pages 841--850, New York, NY, USA, 2012. ACM.
[18]
Y. Wang, Z. Luo, and Y. Yu. Learning for Search Results Diversification in Twitter, pages 251--264. Springer International Publishing, Cham, 2016.
[19]
X. Yin, J. X. Huang, Z. Li, and X. Zhou. A survival modeling approach to biomedical search result diversification using wikipedia. IEEE Transactions on Knowledge and Data Engineering, 25(6):1201--1212, June 2013.
[20]
H.-T. Yu, A. Jatowt, R. Blanco, H. Joho, J. Jose, L. Chen, and F. Yuan. A concise integer linear programming formulation for implicit search result diversification. In Proceedings of the Tenth ACM International Conference on Web Search and Data Mining, WSDM '17, pages 191--200, New York, NY, USA, 2017. ACM.
[21]
L. Zadeh. Fuzzy sets. Information and Control, 8(3):338 -- 353, 1965.
[22]
W. Zheng and H. Fang. Exploiting ontologies for search result diversification. In Proceedings of the Twenty-First Text REtrieval Conference, TREC 2012, Gaithersburg, Maryland, USA, November 6-9, 2012, 2012.

Cited By

View all
  • (2022)An Ontology-Based Approach for Knowledge Acquisition: An Example of Sustainable Supplier Selection Domain CorpusElectronics10.3390/electronics1123401211:23(4012)Online publication date: 3-Dec-2022
  • (2021)Semantic expansion to improve diversity in query formulation2021 IEEE Latin American Conference on Computational Intelligence (LA-CCI)10.1109/LA-CCI48322.2021.9769853(1-6)Online publication date: 2-Nov-2021
  • (2021)A fuzzy ontology framework in information retrieval using semantic query expansionInternational Journal of Information Management Data Insights10.1016/j.jjimei.2021.1000091:1(100009)Online publication date: Apr-2021

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
SAC '18: Proceedings of the 33rd Annual ACM Symposium on Applied Computing
April 2018
2327 pages
ISBN:9781450351911
DOI:10.1145/3167132
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 09 April 2018

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. fuzzy ontology
  2. information retrieval
  3. medical data
  4. search results diversification
  5. semantic web

Qualifiers

  • Research-article

Conference

SAC 2018
Sponsor:
SAC 2018: Symposium on Applied Computing
April 9 - 13, 2018
Pau, France

Acceptance Rates

Overall Acceptance Rate 1,650 of 6,669 submissions, 25%

Upcoming Conference

SAC '25
The 40th ACM/SIGAPP Symposium on Applied Computing
March 31 - April 4, 2025
Catania , Italy

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)3
  • Downloads (Last 6 weeks)0
Reflects downloads up to 19 Feb 2025

Other Metrics

Citations

Cited By

View all
  • (2022)An Ontology-Based Approach for Knowledge Acquisition: An Example of Sustainable Supplier Selection Domain CorpusElectronics10.3390/electronics1123401211:23(4012)Online publication date: 3-Dec-2022
  • (2021)Semantic expansion to improve diversity in query formulation2021 IEEE Latin American Conference on Computational Intelligence (LA-CCI)10.1109/LA-CCI48322.2021.9769853(1-6)Online publication date: 2-Nov-2021
  • (2021)A fuzzy ontology framework in information retrieval using semantic query expansionInternational Journal of Information Management Data Insights10.1016/j.jjimei.2021.1000091:1(100009)Online publication date: Apr-2021

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media