skip to main content
10.1145/3167486.3167502acmotherconferencesArticle/Chapter ViewAbstractPublication PagesiccwcsConference Proceedingsconference-collections
research-article

Automatic Detection and Evaluation of Geological linear Features from Remote Sensing Data Using the Hough Transform Algorithm in Eastern Anti-Atlas (Morocco)

Published:14 November 2017Publication History

ABSTRACT

In order to automate operations often carried out manually by geologists, we have developed under Matlab environment an algorithm taking advantage of a rich already developed libraries. The proposed automatic detection of lineaments approach is based on the method of Hough transform. This algorithm allows the detection of linear features in satellite optical and/or Synthetic Aperture Radar (SAR) images using a set of mathematic calculations. Prior to applying the algorithm on satellite remote sensing data, it was first tested on well-structured objects in an aerial photo of a city. We presented our results of Obtained by the algorithm on a set of satellite images from two satellites, the Landsat 8 and the SAR Sentinel-1A, acquired over our study area, Reg basin, located in the eastern Anti-Atlas, Morocco. The results are compared with those of visual interpretation based on a spatial filtering and tectonic in-situ data collected in the field. The results analysis showed that most extracted lineaments using our algorithm are similar to those of spatial filtering and confirmed by the in-situ data. We concluded that the proposed approach can be used to automatically extract geological lineament with an acceptable accuracy.

References

  1. Karnieli A. Meisels A. Fisher L. and Arkin Y. 1996. Automatic extraction and evaluation of geological linear featurs from digital remote sensing data using a Hough transform. Photogrammetric Engineering and Remote sensing. 62, 5, 525--531.Google ScholarGoogle Scholar
  2. Poncelet N. and Cornet Y. (2010). Transformée de Hough et détection de linéaments sur image satellitaires et modèle numÃl'rique de terrain. BSGLg, 54, 145--156.Google ScholarGoogle Scholar
  3. Roy, D. P., Wulder, M. A., Loveland, T. R., Woodcock, C. E., Allen, R. G., Anderson, M. C., and Scambos, T. A. (2014). Landsat-8: Science and product vision for terrestrial global change research. Remote sensing of Environment, 145, 154--172.Google ScholarGoogle Scholar
  4. Drusch, M., Del Bello, U., Carlier, S., Colin, O., Fernandez, V., Gascon, F., and Meygret, A. (2012). Sentinel-2: ESA's optical high-resolution mission for GMES operational services. Remote Sensing of Environment, 120, 25--36.Google ScholarGoogle ScholarCross RefCross Ref
  5. Mather, P. M. 2004. Computer processing of remotely sensed images. An introduction.third edition. John WileyetSons, 324p. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Barrow H.G. and J.M. Tenenbaun 1981."Interpreting line drawings as threedimensional surfaces", Artificial Intelligence, vol 17, issues 1--3, pages 75--116. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Linderberg T. 2001. "Edge detection", in Hazewinkel, Michiel, Encyclopedia of Mathematics, Springer, ISBN 978-1-55608-010-4.Google ScholarGoogle Scholar
  8. Menalie Mahot et Nazha Selmaoui 2007. Détection et analyse des structures morphologiques linéaires pour l'étude des phénomènes d'érosion. Université de la nouvelle-calédonie, Département EEA, 36p.Google ScholarGoogle Scholar
  9. Schmaltz J et Richard Lepage M. 2006. Détection des contours de la pupille Ãă l'aide des transformées de Hough. Projet de session- SYS844 Vision par ordinateur Ãă l'Ecole de Technologie SupÃl'rieure (ETS). Université du Quèbec.Google ScholarGoogle Scholar
  10. Cazaubon P. et Bimai P. (2009). Développement et mise en oeuvre d'un algorithme d'analyse de films issus d'une camera infrarouge observant un pneu en roulage. Rapport projet, option calcule et modélisation scientifique, Institut Supérieur d'Informatique de Modélisation et de leurs Applications. 72p.Google ScholarGoogle Scholar
  11. Aydogan D. and Komzawa M. 2013. Lineament detection from gravity anomaly maps with the gradient Hough algorithm in adapazari basin. 10p http://muhendislike.Istanbul.edu.tr/jeobji/wp-content/uploads/2014.Google ScholarGoogle Scholar
  12. Renson P. Poncelet N. Vandeloise Y. Schmidt R. and Cornet Y. 2014. Automatisation de la détection des cratères lunaires sur des images et MNT planétaire. Bulletin de la Société Géographique de Liége, Société Géographique de Liége, Volume 61.Google ScholarGoogle Scholar
  13. Lacombe J.P. (2007-2008), Initiation au traitement d'images satellitales, cours ENSA, Toulouse.Google ScholarGoogle Scholar
  14. Baidder L. 2008. Structuration de la bordure septentrionale du Craton Ouest Africain du Cambrien Ãă l'actuel: Cas de l'Anti Atlas oriental du Maroc. Thése Doctorat d'état es-science (Option Géologie Structurale). Universitè Hassane 2 Ain chock, Casablanca, Maroc. 215p.Google ScholarGoogle Scholar
  15. Robert-Charrue, C. (2006). Géologie structurale de l'Anti-Atlas oriental, Maroc (Doctoral dissertation, Université de Neuchâtel).Google ScholarGoogle Scholar

Index Terms

  1. Automatic Detection and Evaluation of Geological linear Features from Remote Sensing Data Using the Hough Transform Algorithm in Eastern Anti-Atlas (Morocco)

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Other conferences
      ICCWCS'17: Proceedings of the 2nd International Conference on Computing and Wireless Communication Systems
      November 2017
      512 pages
      ISBN:9781450353069
      DOI:10.1145/3167486

      Copyright © 2017 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 14 November 2017

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article
      • Research
      • Refereed limited

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader