skip to main content
10.1145/3167486.3167564acmotherconferencesArticle/Chapter ViewAbstractPublication PagesiccwcsConference Proceedingsconference-collections
research-article

Application of numerical simulation to evaluate the rupture of pipelines

Published:14 November 2017Publication History

ABSTRACT

Pipelines are critical infrastructure that plays an important role in the oil industry, and the most widely used mode of transportation in the world to transport gas and oil. One example is the proposed gas pipeline that will connect Nigeria with Morocco [1]. The external environment may impact these pipelines by scraping excavation equipment or rock causing damage in the form of a notch or crack in the wall of the pipe which consequently affects the resistance of the structures during their use. This requires knowledge of the degree of harmfulness of defects and its effect on the lifetime of pipelines. Based on this method, we intend to proceed by the use of the fracture mechanics.

In this paper, we will use numerical simulation using ABAQUS software to describe the most important parameters of the rupture mechanics used to predict pipe rupture in the field of elastic mechanics. Analyzes existing in the literature. At the end of this paper, we computed the Stress Intensity Factor KI mode I in the elastic domain using the XFEM method integrated in ABAQUS. The results that we will develop later will show a good agreement between the results computed by the software ABAQUS and this one found by the analytical methods of several authors.

References

  1. « Nigeria and Morocco sign gas pipeline deal to link Africa to Europe ». {En ligne}. Disponible sur: http://www.reuters.com/article/nigeria-pipeline-morocco/nigeria-and-morocco-sign-gas-pipeline-deal-to-link-africa-to-europe-idUSL8N1DY007. {Consulté le: 04-sept-2017}.Google ScholarGoogle Scholar
  2. C. Lam et W. Zhou, « Statistical analyses of incidents on onshore gas transmission pipelines based on PHMSA database », Int. J. Press. Vessels Pip., vol. 145, p. 29--40, sept. 2016.Google ScholarGoogle Scholar
  3. P. V. Bassani, H. J. Amorim, et I. Iturrioz, « Pressure Vessel Failure Analysis », in 20th International Congress of Mechanical Engineering, 2009.Google ScholarGoogle Scholar
  4. A. Zahoor, « Journal of IVessure Vessel Technology », J. Press. Vessel Technol., vol. 107, p. 203, 1985.Google ScholarGoogle Scholar
  5. J. R. Rice et others, « A path independent integral and the approximate analysis of strain concentration by notches and cracks », 1968.Google ScholarGoogle Scholar
  6. I. S. Raju et J. C. Newman Jr, « Stress-intensity factors for internal and external surface cracks in cylindrical vessels », J. Press. Vessel Technol. ASME, vol. 104, no 4, p. 293--298, 1982.Google ScholarGoogle Scholar
  7. T. L. Anderson, Fracture Mechanics: Fundamentals and Applications, 3 Edition. USA: Taylor & Francis, 2005.Google ScholarGoogle Scholar
  8. M. A. Bouchelarm, M. Mazari, et N. Benseddiq, « Stress Intensity Factor K I and T-Stress Determination in HDPE Material », J. Fail. Anal. Prev., août 2017.Google ScholarGoogle Scholar
  9. O. Bouledroua, M. H. Meliani, et G. Pluvinage, « A review of T-stress calculation methods in fracture mechanics computation », Nat. Technol., no 15, p. 20, 2016.Google ScholarGoogle Scholar
  10. M. Hadj Meliani et al., « The Two-Parameter Approach for Fracture Mechanics: Some Industrial Applications », in Fracture at all Scales, G. Pluvinage et L. Milovic, Éd. Cham: Springer International Publishing, 2017, p. 105--134.Google ScholarGoogle Scholar
  11. M. L. WILLIAMS, « JOURNAL OF APPLIED MECHANICS », p. 110--114, 1957.Google ScholarGoogle Scholar
  12. J. D. G. Sumpter, « Constraint based analysis of shallow cracks in mild steel », SHALLOW CRACK FRACTURE MECHANICS, TWI Cambridge, UK TOUGHNESS TESTS AND APPLICATIONS, Cambridge, UK, p. 67--75, sept-1992.Google ScholarGoogle Scholar
  13. Y. J. Chao, P. S. Lam, et L. Zhang, « Effect of constraint on fracture controlled by stress or strain », Theoretical and Applied Fracture Mechanics, p. 75--86, sept-1998.Google ScholarGoogle ScholarCross RefCross Ref
  14. J. R. Rice, « Limitations to the small scale yielding approximation for crack tip plasticity », J. Mech. Phys. Solids, vol. 22, no 1, p. 17--26, janv. 1974.Google ScholarGoogle ScholarCross RefCross Ref
  15. S.-G. Larsson et A. Carlsson, « Influence of non-singular stress terms and specimen geometry on small-scale yielding at crack tips in elastic-plastic materials », J. Mech. Phys. Solids, vol. 21, no 4, p. 263--277, 1973.Google ScholarGoogle ScholarCross RefCross Ref
  16. H. Moustabchir, Z. Azari, S. Hariri, et I. Dmytrakh, « Three-Dimensional T-Stress to Predict the Directional Stability of Crack Propagation in a Pipeline with External Surface Crack », Key Eng. Mater., vol. 498, p. 31--41, janv. 2012.Google ScholarGoogle ScholarCross RefCross Ref
  17. M. H. Meliani, Z. Azari, G. Pluvinage, et Y. G. Matvienko, « The effective T-stress estimation and crack paths emanating from U-notches », Eng. Fract. Mech., vol. 77, no 11, p. 1682--1692, juill. 2010.Google ScholarGoogle ScholarCross RefCross Ref
  18. C. Q. Li, G. Y. Fu, et S. T. Yang, « Elastic Fracture Toughness for Ductile Metal Pipes with Circumferential Surface Cracks », Key Eng. Mater., vol. 730, p. 489--495, févr. 2017.Google ScholarGoogle ScholarCross RefCross Ref
  19. M. Meriem-Benziane, G. Ibrahim, Z. Hamou, et B. Bachir-Bouiadjra, « Stress intensity factor investigation of critical surface crack in a cylinder », Adv. Mater. Process. Technol., vol. 1, no 1--2, p. 36--42, avr. 2015.Google ScholarGoogle Scholar
  20. A. Keprate, R. M. C. Ratnayake, et S. Sankararaman, « Adaptive Gaussian process regression as an alternative to FEM for prediction of stress intensity factor to assess fatigue degradation in offshore pipeline », Int. J. Press. Vessels Pip., vol. 153, p. 45--58, juin 2017.Google ScholarGoogle ScholarCross RefCross Ref
  21. H. Moustabchir, J. Arbaoui, Z. Azari, S. Hariri, et C. I. Pruncu, « Experimental/numerical investigation of mechanical behaviour of internally pressurized cylindrical shells with external longitudinal and circumferential semi-elliptical defects », Alex. Eng. J., juin 2017.Google ScholarGoogle Scholar
  22. H. Khoramishad et M. R. Ayatollahi, « Finite element analysis of a semi-elliptical external crack in a buried pipe », Trans Can Soc Mech Eng, vol. 33, p. 399--409, 2009.Google ScholarGoogle ScholarCross RefCross Ref
  23. Y. Sahu et S. Moulick, « Analysis of Semi-elliptical Crack in a Thick Walled Cylinder Using FE », Int J Adv Engg Res Stud.-March, vol. 231, p. 235, 2015.Google ScholarGoogle Scholar

Recommendations

Comments

Login options

Check if you have access through your login credentials or your institution to get full access on this article.

Sign in
  • Published in

    cover image ACM Other conferences
    ICCWCS'17: Proceedings of the 2nd International Conference on Computing and Wireless Communication Systems
    November 2017
    512 pages
    ISBN:9781450353069
    DOI:10.1145/3167486

    Copyright © 2017 ACM

    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    • Published: 14 November 2017

    Permissions

    Request permissions about this article.

    Request Permissions

    Check for updates

    Qualifiers

    • research-article
    • Research
    • Refereed limited
  • Article Metrics

    • Downloads (Last 12 months)1
    • Downloads (Last 6 weeks)0

    Other Metrics

PDF Format

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader