skip to main content
10.1145/3170521.3170529acmotherconferencesArticle/Chapter ViewAbstractPublication Pagesworkshops-icdcnConference Proceedingsconference-collections
research-article

Low-power wide-area networks: opportunities, challenges, and directions

Published:04 January 2018Publication History

ABSTRACT

Low-Power Wide-Area Network (LPWAN) is an emerging network technology for Internet of Things (IoT) which offers long-range and wide-area communication at low-power. It thus overcomes the range limits and scalability challenges associated with traditional short range wireless sensor networks. Due to their escalating demand, LPWANs are gaining momentum, with multiple competing technologies currently being developed. Despite their promise, existing LPWAN technologies raise a number of challenges in terms of spectrum limitation, coexistence, mobility, scalability, coverage, security, and application-specific requirements which make their adoption challenging. In this paper, we identify the key opportunities of LPWAN, highlight the challenges, and show potential directions of the future research on LPWAN.

References

  1. {n.d.}. ({n. d.}). http://standards.ieee.org/about/get/802/802.15.html.Google ScholarGoogle Scholar
  2. {n.d.}. ({n.d.}). http://www.iqrf.org/technology.Google ScholarGoogle Scholar
  3. {n. d.}. ({n. d.}). https://www.ingenu.com/technology/rpma.Google ScholarGoogle Scholar
  4. {n. d.}. ({n. d.}). http://www.dash7-alliance.org.Google ScholarGoogle Scholar
  5. {n. d.}. ({n. d.}). http://www.weightless.org.Google ScholarGoogle Scholar
  6. {n. d.}. ({n. d.}). https://www.u-blox.com/en/lte-cat-m1.Google ScholarGoogle Scholar
  7. {n. d.}. ({n. d.}). https://www.gsma.com/iot/wp-content/uploads/2016/10/3GPP-Low-Power-Wide-Area-Technologies-GSMA-White-Paper.pdf.Google ScholarGoogle Scholar
  8. {n. d.}. ({n. d.}). https://www.u-blox.com/en/narrowband-iot-nb-iot.Google ScholarGoogle Scholar
  9. {n. d.}. ({n. d.}). https://www.climate.com.Google ScholarGoogle Scholar
  10. {n. d.}. ({n. d.}). https://m2x.att.com/iot/industry-solutions/iot-data/agriculture/.Google ScholarGoogle Scholar
  11. {n. d.}. ({n. d.}). https://www.rcrwireless.com/20151111/internet-of-things/agricultural-internet-of-things-promises-to-reshape-farming-tag15.Google ScholarGoogle Scholar
  12. {n. d.}. ({n. d.}). https://www.i-scoop.eu/internet-of-things-guide/iot-network-lora-lorawan/.Google ScholarGoogle Scholar
  13. {n. d.}. ({n. d.}). http://www.link-labs.com/what-is-sigfox/.Google ScholarGoogle Scholar
  14. {n. d.}. ({n. d.}). http://petrocloud.com/solutions/oilfield-monitoring/.Google ScholarGoogle Scholar
  15. {n. d.}. ({n. d.}). https://transmitter.ieee.org/smart-connected-communities/.Google ScholarGoogle Scholar
  16. {n. d.}. Bluetooth. ({n. d.}). http://www.bluetooth.com.Google ScholarGoogle Scholar
  17. {n. d.}. FarmBeats: IoT for agriculture. ({n. d.}). https://www.microsoft.com/en-us/research/project/farmbeats-iot-agriculture/.Google ScholarGoogle Scholar
  18. {n. d.}. IEEE 802.11. ({n. d.}). http://www.ieee802.org/11.Google ScholarGoogle Scholar
  19. {n. d.}. LoRa Modem Design Guide. ({n. d.}). http://www.semtech.com/images/datasheet/LoraDesignGuide_STD.pdf.Google ScholarGoogle Scholar
  20. {n. d.}. LoRaWAN. ({n. d.}). https://www.lora-alliance.org.Google ScholarGoogle Scholar
  21. {n. d.}. ngmn. ({n. d.}). http://www.ngmn.org.Google ScholarGoogle Scholar
  22. {n. d.}. RPMA - A Technical Drill-Down into Ingenu?s LP-WAN Technology. ({n. d.}). https://www.leverege.com/blogpost/rpma-technical-drill-down-ingenus-lpwan-technology.Google ScholarGoogle Scholar
  23. {n. d.}. SIGFOX. ({n. d.}). http://sigfox.com.Google ScholarGoogle Scholar
  24. {n. d.}. Smart and Connected Communities Framework. ({n. d.}). https://www.nitrd.gov/sccc/.Google ScholarGoogle Scholar
  25. 2016. Ericsson. (2016). https://www.ericsson.com/assets/local/publications/white-papers/wp_iot.pdf.Google ScholarGoogle Scholar
  26. 2017. Telensa. (2017). https://www.telensa.com.Google ScholarGoogle Scholar
  27. Norman Abramson. 1970. THE ALOHA SYSTEM: another alternative for computer communications. In Proceedings of the November 17-19, 1970, fall joint computer conference. ACM, 281--285. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. DP Acharjya and M Kalaiselvi Geetha. 2017. Internet of Things: Novel Advances and Envisioned Applications. (2017). Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Ferran Adelantado, Xavier Vilajosana, Pere Tuset-Peiro, Borja Martinez, Joan Melia-Segui, and Thomas Watteyne. 2017. Understanding the Limits of LoRaWAN. IEEE Communications Magazine (January 2017).Google ScholarGoogle Scholar
  30. Amsterdam Smart City {n. d.}. ({n. d.}). https://amsterdamsmartcity.com.Google ScholarGoogle Scholar
  31. A Augustin, Jiazi Yi, Thomas Clausen, and William Mark Townsley. 2016. A Study of LoRa: Long Range and amp; Low Power Networks for the Internet of Things. Sensors 16, 9 (2016).Google ScholarGoogle Scholar
  32. J. P. Bardyn, T. Melly, O. Seller, and N. Sornin. 2016. IoT: The era of LPWAN is starting now. In ESSCIRC Conference 2016: 42nd European Solid-State Circuits Conference. 25--30.Google ScholarGoogle Scholar
  33. Martin C. Bor, Utz Roedig, Thiemo Voigt, and Juan M. Alonso. 2016. Do LoRa Low-Power Wide-Area Networks Scale?. In Proceedings of the 19th ACM Intl. Conf. on Modeling, Analysis and Simulation of Wireless and Mobile Syst. 59--67. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Marco Cattani, Carlo Alberto Boano, and Kay Romer. 2017. An Experimental Evaluation of the Reliability of LoRa Long-Range Low-Power Wireless Communication. Journal of Sensor and Actuator Networks 6, 2 (2017).Google ScholarGoogle Scholar
  35. Li Da Xu, Wu He, and Shancang Li. 2014. Internet of things in industries: A survey. IEEE Transactions on industrial informatics 10, 4 (2014), 2233--2243.Google ScholarGoogle ScholarCross RefCross Ref
  36. E. De Poorter, J. Hoebeke, M. Strobbe, I. Moerman, S. Latré, M. Weyn, B. Lannoo, and J. Famaey. 2017. Sub-GHz LPWAN network coexistence, management and virtualization: an overview and open research challenges. Wireless Personal Communications 95, 1 (2017), 187--213. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Eli De Poorter, Jeroen Hoebeke, Matthias Strobbe, I. Moerman, S. LatrÃl', M. Weyn, B. Lannoo, and J. Famaey. 2017. Sub-GHz LPWAN Network Coexistence, Management and Virtualization: An Overview and Open Research Challenges. Wirel. Pers. Commun. 95, 1 (July 2017), 187--213. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Nasf Ekiz, Tara Salih, Sibel KuÃğukoner, and Kemal Fidanboylu. 2007. An Overview of Handoff Techniques in Cellular Networks. International Journal of Information Technology 2 (2007).Google ScholarGoogle Scholar
  39. Dario Floreano and Robert J. Wood. 2015. Science, technology and the future of small autonomous drones. 521 (2015), 460--466.Google ScholarGoogle Scholar
  40. O. Georgiou and U. Raza. 2017. Low Power Wide Area Network Analysis: Can LoRa Scale? IEEE Wireless Communications Letters 6, 2 (2017), 162--165.Google ScholarGoogle ScholarCross RefCross Ref
  41. SM Riazul Islam, Daehan Kwak, MD Humaun Kabir, Mahmud Hossain, and Kyung-Sup Kwak. 2015. The internet of things for health care: a comprehensive survey. IEEE Access 3 (2015), 678--708.Google ScholarGoogle ScholarCross RefCross Ref
  42. Song Min Kim and Tian He. 2015. Freebee: Cross-technology communication via free side-channel. In MobiCom. ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. L. Krupka, L. Vojtech, and M. Neruda. 2016. The issue of LPWAN technology coexistence in IoT environment. In 2016 17th International Conference on Mechatronics - Mechatronika (ME). 1--8.Google ScholarGoogle Scholar
  44. Link Labs {n. d.}. ({n. d.}). https://www.link-labs.com.Google ScholarGoogle Scholar
  45. Jaime Lloret, Miguel Garcia-Pineda, Diana Bri, and Sandra Sendra. 2009. A Wireless Sensor Network Deployment for Rural and Forest Fire Detection and Verification. Sensors (Basel, Switzerland) 9 (11 2009), 8722--47.Google ScholarGoogle Scholar
  46. LTE Standard 2014. THE LTE STANDARD. (2014). https://www.qualcomm.com/media/documents/files/the-lte-standard.pdf.Google ScholarGoogle Scholar
  47. Paul Marcelis, Vijay S Rao, and R Venkatesha Prasad. 2017. DaRe: Data Recovery through Application Layer Coding for LoRaWANs. IoTDI '17 (2017). Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. M. Duane Nellis, Kamlesh Lulla, and Jensen John. 1990. Interfacing Geographic Information Systems and Remote Sensing for Rural Land Use Analysis. Photogrammetric Engineering and Remote Sensing (ISSN 0099-1112) 56 (1990), 329--331.Google ScholarGoogle Scholar
  49. T. Nuortio, J. Kytöjoki, H. Niska, and O. Bräysy. 2006. Improved route planning and scheduling of waste collection and transport. Expert systems with applications 30, 2 (2006), 223--232. Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. Dhaval Patel and Myounggyu Won. 2017. Experimental Study on Low Power Wide Area Networks (LPWAN) for Mobile Internet of Things. In 2017 IEEE 85th Vehicular Technology Conference (VTC'17 Spring).Google ScholarGoogle Scholar
  51. Podova Smart City {n. d.}. ({n. d.}). http://hit.psy.unipd.it/padova-smart-city.Google ScholarGoogle Scholar
  52. U. Raza, P. Kulkarni, and M. Sooriyabandara. 2017. Low Power Wide Area Networks: An Overview. IEEE Communications Surveys Tutorials 19, 2 (2017), 855--873.Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. A. Saifullah, M. Rahman, D. Ismail, C. Lu, R. Chandra, and J. Liu. 2016. SNOW: Sensor Network over White Spaces. In SenSys '16. ACM, 272--285. Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. A. Saifullah, M. Rahman, D. Ismail, Chenyang Lu, Jie Liu, and Ranveer Chandra. 2017. Enabling Reliable, Asynchronous, and Bidirectional Communication in Sensor Networks over White Spaces. In SenSys '17. ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. Abusayeed Saifullah, Sriram Sankar, Jie Liu, Chenyang Lu, Bodhi Priyantha, and Ranveer Chandra. {n. d.}. CapNet: A real-Time Wireless Management Network for Data Center Power Capping. In RTSS '14.Google ScholarGoogle Scholar
  56. Zach Shelby and Carsten Bormann. 2009. A: IPv6 Ref. John Wiley and Sons.Google ScholarGoogle Scholar
  57. A. Sikora and V. F. Groza. 2005. Coexistence of IEEE 802.15.4 with other Systems in the 2.4 GHz-ISM-Band. In 2005 IEEE Instrumentation and Measurement Technology Conference Proceedings, Vol. 3. 1786--1791.Google ScholarGoogle Scholar
  58. Deepak Vasisht, Zerina Kapetanovic, Jongho Won, Xinxin Jin, Ranveer Chandra, Sudipta Sinha, Ashish Kapoor, Madhusudhan Sudarshan, and Sean Stratman. 2017. FarmBeats: An IoT Platform for Data-Driven Agriculture. In 14th USENIX Symposium on Networked Systems Design and Implementation (NSDI 17). 515--529. Google ScholarGoogle ScholarDigital LibraryDigital Library
  59. N. Vatcharatiansakul, P. Tuwanut, and C. Pornavalai. 2017. Experimental performance evaluation of LoRaWAN: A case study in Bangkok. In 2017 14th International Joint Conference on Computer Sc. and Software Engg. (JCSSE). 1--4.Google ScholarGoogle Scholar
  60. Andrew J Viterbi. 1995. CDMA: principles of spread spectrum communication. Addison Wesley Longman Publishing Co., Inc. Google ScholarGoogle ScholarDigital LibraryDigital Library
  61. Thiemo Voigt, Martin Bor, Utz Roedig, and Juan Alonso. 2017. Mitigating Internetwork Interference in LoRa Networks. In Proceedings of the 2017 International Conference on Embedded Wireless Systems and Networks (EWSN '17). 323--328.Google ScholarGoogle ScholarDigital LibraryDigital Library
  62. Y-P E. Wang, X. Lin, A. Adhikary, A. Grovlen, Y. Sui, Y. Blankenship, J. Bergman, and H S Razaghi. 2017. A primer on 3gpp narrowband internet of things. IEEE Comm. Magazine 55, 3 (2017), 117--123. Google ScholarGoogle ScholarDigital LibraryDigital Library
  63. M. Weyn, G. Ergeerts, R. Berkvens, B. Wojciechowski, and Y. Tabakov. {n. d.}. DASH7 alliance protocol 1.0: Low-power, mid-range sensor and actuator communication. In CSCN '15.Google ScholarGoogle Scholar
  64. WiMAX {n. d.}. WiMAX. ({n. d.}). https://en.wikipedia.org/wiki/WiMAX.Google ScholarGoogle Scholar
  65. X. Xiong, K. Zheng, R. Xu, W. Xiang, and P. Chatzimisios. 2015. Low power wide area machine-to-machine networks: key techniques and prototype. IEEE Communications Magazine 53, 9 (2015), 64--71.Google ScholarGoogle ScholarDigital LibraryDigital Library
  66. D. Yang, Y. Xu, and M. Gidlund. 2010. Coexistence of IEEE802.15.4 based networks: A survey. In IECON 2010 - 36th Annual Conference on IEEE Industrial Electronics Society. 2107--2113.Google ScholarGoogle Scholar
  67. Dong Yang, Youzhi Xu, and Mikael Gidlund. 2011. Wireless Coexistence between IEEE 802.11-- and IEEE 802.15.4-Based Networks: A Survey. International Journal of Distributed Sensor Networks 7, 1 (2011), 912152.Google ScholarGoogle ScholarCross RefCross Ref
  68. A. Zanella, N. Bui, A. Castellani, L. Vangelista, and M. Zorzi. 2014. Internet of things for smart cities. IEEE IoT journal 1, 1 (2014), 22--32.Google ScholarGoogle Scholar
  69. ZigBee {n. d.}. ({n. d.}). http://www.zigbee.org.Google ScholarGoogle Scholar

Index Terms

  1. Low-power wide-area networks: opportunities, challenges, and directions

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Other conferences
      Workshops ICDCN '18: Proceedings of the Workshop Program of the 19th International Conference on Distributed Computing and Networking
      January 2018
      151 pages
      ISBN:9781450363976
      DOI:10.1145/3170521
      • Conference Chair:
      • Doina Bein

      Copyright © 2018 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 4 January 2018

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader