skip to main content
10.1145/3173225.3173332acmconferencesArticle/Chapter ViewAbstractPublication PagesteiConference Proceedingsconference-collections
abstract

Deformable Controllers: Fabrication and Design to Promote Novel Hand Gestural Interaction Mechanisms

Published:18 March 2018Publication History

ABSTRACT

When compared to mainstream touch/button-centric devices, deformable devices enable a more organic and tangible way for human-computer interaction. This studio provides participants an opportunity to have hands-on experience in fabricating controllers that use various deformation inputs (e.g., bending, stretching), and promote novel interaction mechanisms using hand gestures. Participants will learn different types of deformation inputs and create their own sensors. They will work in groups to design deformable controllers using both the sensors they make in-session and/or pre-built ones, to afford novel hand gestural inputs beyond conventional touches and clicks. The main objectives of this studio are to facilitate exchange of experience in fabricating deformable sensors/materials, and to foster creativity in using such controllers as inputs with hand gestures.

References

  1. Fellion, N., Eady, A.K., and Girouard, A. FlexStylus: A deformable stylus for digital art. Proc. CHI EA, ACM Press (2016), 2482--2489. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Girouard, A., Lo, J., Riyadh, M., Daliri, F., Eady, A.K., and Pasquero, J. One-Handed Bend Interactions with Deformable Smartphones. Proc. CHI, ACM (2015), 1509--1518. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Gomes, A., Priyadarshana, L., Carrascal, J.P., and Vertegaal, R. WhammyPhone: Exploring Tangible Audio Manipulation Using Bend Input on a Flexible Smartphone. Proc. UIST Adjunct, ACM (2016), 159--161. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Herkenrath, G., Karrer, T., and Borchers, J. Twend: Twisting and Bending as new Interaction Gesture in Mobile Devices. Proc. CHI EA, ACM (2008), 3819--3824. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Kildal, J., Paasovaara, S., and Aaltonen, V. Kinetic device: Designing Interactions with a Deformable Mobile Interface. CHI EA, ACM (2012), 1871. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Kuang, K.S.C., Cantwell, W.J., and Scully, P.J. An evaluation of a novel plastic optical fibre sensor for axial strain and bend measurements. Meas. Sci. Technol. 13, 10 (2002), 1523--1534.Google ScholarGoogle ScholarCross RefCross Ref
  7. Lahey, B., Girouard, A., Burleson, W., and Vertegaal, R. PaperPhone: Understanding the use of bend gestures in mobile devices with flexible electronic paper displays. Proc. CHI, ACM (2011), 1303--1312. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Lee, S.-S., Kim, S., Jin, B., et al. How users manipulate deformable displays as input devices. Proc. CHI, ACM (2010), 1647--1656. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Lo, J. and Girouard, A. Fabricating Bendy: Design and Development of Deformable Prototypes. IEEE Pervasive Comput. Spec. Issue Fabr. Print. 13, 3 (2014), 40--46.Google ScholarGoogle Scholar
  10. Lo, J. and Girouard, A. Bendy: An exploration into gaming with mobile flexible devices. Proc. TEI, ACM (2017), 163--172. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Shorey, P. and Girouard, A. Bendtroller: An exploration of in-game action mappings with a deformable game controller. Proc. CHI, ACM (2017), 1447--1458. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Strohmeier, P., Burstyn, J., Carrascal, J.P., Levesque, V., and Vertegaal, R. ReFlex: A Flexible Smartphone with Active Haptic Feedback for Bend Input. Proc. TEI, (2016), 185--192. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Vadgama, N. and Steimle, J. Flexy: Shape-Customizable, Single-Layer, Inkjet Printable Patterns for 1D and 2D Flex Sensing. Proc. TEI, ACM (2017), 153--162. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Vanderloock, K., Vanden Abeele, V., Suykens, J.A.K., and Geurts, L. The skweezee system: enabling the design and the programming of squeeze interactions. Proc. UIST, ACM (2013), 521--530. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Wessely, M., Tsandilas, T., and Mackay, W.E. Stretchis: Fabricating Highly Stretchable User Interfaces. Proc. UIST, ACM (2016), 697--704. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Withana, A. and Steimle, J. Tutorial: Personalized interactive surfaces with printed electronics. Proc. ISS, ACM (2017). Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Flex Sensors Instructables. http://www.instructables.com/howto/flex+sensor/.Google ScholarGoogle Scholar
  18. Neoprene Bend Sensor. http://www.kobakant.at/DIY/?p=20.Google ScholarGoogle Scholar

Index Terms

  1. Deformable Controllers: Fabrication and Design to Promote Novel Hand Gestural Interaction Mechanisms

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in
          • Published in

            cover image ACM Conferences
            TEI '18: Proceedings of the Twelfth International Conference on Tangible, Embedded, and Embodied Interaction
            March 2018
            763 pages
            ISBN:9781450355681
            DOI:10.1145/3173225

            Copyright © 2018 Owner/Author

            Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the Owner/Author.

            Publisher

            Association for Computing Machinery

            New York, NY, United States

            Publication History

            • Published: 18 March 2018

            Check for updates

            Qualifiers

            • abstract

            Acceptance Rates

            TEI '18 Paper Acceptance Rate37of130submissions,28%Overall Acceptance Rate393of1,367submissions,29%

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader