skip to main content
10.1145/3180382.3180386acmotherconferencesArticle/Chapter ViewAbstractPublication PagesicbbbConference Proceedingsconference-collections
research-article

Simulation Study for Wild-Type and C101F Mutant of LIM2 Domain in FHL1

Authors Info & Claims
Published:18 January 2018Publication History

ABSTRACT

Myopathy is a rare disease lacking a fundamental therapy. Several genetic factors are involved in myopathy; those caused by mutations in FHL1 are rare. We performed molecular dynamics simulation of the LIM2 domain in FHL1 (four and a half LIM domain protein 1). We simulated a partial system consisting of only the LIM2 domain for the wild-type and C101F mutant to confirm the structural stability. We found that structural changes and fluctuations were larger for the mutant type than for the wild-type. Therefore, mutant type structures are unstable in water when the mutations are in residues constituting the zinc finger. Similar results were observed in the simulation of the LIM1+LIM2 domain.

References

  1. Komagamine, T., Kawai, M., Kokubun, N., Miyatake, S., Ogata, K., Hayashi, Y., Nishino, I., and Hirata, K. Selective muscle involvement in a family affected by a second LIM domain mutation of FHL1: An imaging study using computed tomography. J. Neurol. Sci. 318 (2012), 163--167.Google ScholarGoogle ScholarCross RefCross Ref
  2. Shathasivam, T., Kislinger, T., and Gramolini., O. A. Genes proteins and complexes: The multifaceted nature of FHL family proteins in diverse tissues. J. Cell. Mol. Med. 14 (2010), 2702--2720.Google ScholarGoogle ScholarCross RefCross Ref
  3. Schessl, J., Feldkirchner, S., Kubny, C., and Schoser, B. Reducing body myopathy and other FHL1-related muscular disorders.Semin. Pediatr. Neurol. 18 (2011), 257--263.Google ScholarGoogle ScholarCross RefCross Ref
  4. Cowling, S. B., Cottle, L. D., Wilding, R. B., D'Arcy, E. C., Mitchell, A. C., and McGrath, J. M. Four and a half LIM protein 1 gene mutations cause four distinct human myopathies: A comprehensive review of the clinical, histological and pathological features. Neuromuscul. Disord. 21 (2011), 237--251.Google ScholarGoogle ScholarCross RefCross Ref
  5. Hu, L. Y. R., Ackermann, A. M., and Kontrogianni-Konstantopoulos, A. The sarcomeric M-region: A molecular command center for diverse cellular processes. Biomed. Res. Int. (2015), 1--25.Google ScholarGoogle ScholarCross RefCross Ref
  6. Tsugawa, J., Ohyagi, Y., Hayashi, Y. K., Nishino, I., and Kira, J. I. A case of adult-onset reducing body myopathy presenting a novel clinical feature, asymmetrical involvement of the sternocleidomastoid and trapezius muscles. J. Neurol. Sci. 343 (2014), 206--210.Google ScholarGoogle ScholarCross RefCross Ref
  7. Selcen, D., Bromberg, B. M., Chin, S. S., and Engel, G. A. Reducing bodies and myofibrillar myopathy features in FHL1 muscular dystrophy. Neurology. 77 (2011), 1951--1959.Google ScholarGoogle ScholarCross RefCross Ref
  8. Chen, H. D., Raskind, H. W., Parson W. W., Sonnen A. J., Vu, T., Zheng, L. Y., Matsushita, M., Wolff, J., Lipe, H., and Bird, D. T. A novel mutation in FHL1 in a family with X-linked scapuloperoneal myopathy: phenotypic spectrum and structual study of FHL1 mutations. J. Neurol. Sci. 296 (2010), 22--29.Google ScholarGoogle ScholarCross RefCross Ref
  9. Peters, B. M., Yang, Y., Wang, B., Füsti-Molnár, L., Weaver, N. M., and Merz, M. K. Structural survey of zinc-containing proteins and development of the zinc AMBER force field (ZAFF). J. Chem. Theory Comput. 6 (2010), 2935--2947.Google ScholarGoogle ScholarCross RefCross Ref
  10. Qin, X. R., Nagashima, T., Hayashi, F., and Yokoyama, S. Solution structure of the second LIM domain of skeletal muscle LIM protein 1 (database on the Internet). (2005). available from: http://www.pdb.org/pdb/explore.do?structureId=1X63.Google ScholarGoogle Scholar
  11. Niraula, T. N., Koshiba, S., Inoue, M., Kigawa, T., and Yokoyama, S. Solution structure of the skeletal muscle LIM protein 1 (database on the Internet). (2005). available from: http://www.pdb.org/pdb/explore.do?structureId=2cup.Google ScholarGoogle Scholar
  12. Webb, B., and Sail, A. Comparative protein structure modeling using modeller. Curr. Protoc. Bioinformatics. (2014), 5.6.1--5.6.32. http://www.expasy.org/spdbv.Google ScholarGoogle Scholar
  13. Marti-Renom, A. M., Stuart, A., Fiser, A., Sánchez, R., Melo, F., and Sali, A. Comparative protein structure modeling of genes and genomes. Annu. Rev. Biophys. Biomol. Struct. 29 (2000), 291--325.Google ScholarGoogle ScholarCross RefCross Ref
  14. Sali, A., and Blundell, T. L. Comparative protein modelling by satisfaction of spatial restraints. J. Mol. Biol. 234 (1993), 779--815.Google ScholarGoogle ScholarCross RefCross Ref
  15. Fiser, A., Do, K. R., and Sali, A. Modeling of loops in protein structures, Protein Science. 9 (2000), 1753--1773. https://salilab.org/modeller.Google ScholarGoogle ScholarCross RefCross Ref
  16. Guex, N., and Peitsch, M. C. SWISS-MODEL and the Swiss-PdbViewer: An environment for comparative protein modeling. Electrophoresis. 18 (1997), 2714--2723.Google ScholarGoogle ScholarCross RefCross Ref
  17. Case, A. D., Cerutti, S. D., Cheatham, E. T., III, Darden, A. T., Duke, E. R., Giese, J. T., Gohlke, H., Goetz, W. A., Greene, D., Homeyer, N., Izadi, S., Kovalenko, A., Lee, S. T., LeGrand, S., Li, P., Lin, C., Liu, J., Luchko, T., Luo, R., Mermelstein, D., Merz, M. K., Monard, G., Nguyen, H., Omelyan, I., Onufriev, A., Pan, F., Qi, R., Roe, R. D., Roitberg, A., Sagui, C., Simmerling, L. C., Botello-Smith, M. W., Swails, J.,Walker, C. R., Wang, J., Wolf, M. R., Wu, X., Xiao, L., York, M. D., and Kollman, A. P. (2017), AMBER 2017, University of California, San Francisco.Google ScholarGoogle Scholar
  18. Berendsen, C. J. H., Spoel, D. V. D., and Drunen V. R. GROMACS: A message-passing parallel molecular dynamics implementation. Comp. Phys. Comm. 91 (1995), 43--56.Google ScholarGoogle ScholarCross RefCross Ref
  19. Lindahl, E., Hess, B., and Spoel D.V.D. GROMACS 3.0: a package for molecular simulation and trajectory analysis. J. Mol. Model. 7 (2001), 306--317.Google ScholarGoogle Scholar
  20. Spoel, D. V. D., Lindahl, E., Hess, B., Groenhof, G., Mark, E. A., and Berendsen, C. J. H. GROMACS: Fast, flexible, and free. J. Comput. Chem. 26 (2005), 1701--1718.Google ScholarGoogle ScholarCross RefCross Ref
  21. Hess, B., Kutzner, Carsten., Spoel D.V. D., and Lindahl, E. GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation. J. Chem. Theory Comput. 4 (2008), 435--447.Google ScholarGoogle ScholarCross RefCross Ref
  22. Pronk, S., Páll, S., Schulz, R., Larsson, P., Bjelkmar, P.,Apostolov, R., Shirts, R. M., Smith, C. J., Kasson, M. P., Spoel, D. V. D., Hess, B., and Lindahl, Erik. GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics. 29 (2013), 845--854. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Páll, S., Abraham, J. M., Kutzner, C., Hess, B., and Lindahl, Erik. Tacking exascale software challenges in molecular dynamics simulations with GROMACS. Proc of EASC 2015 LNCS. 8759 (2015), 3--27.Google ScholarGoogle Scholar
  24. Abraham, J. M., Murtola, T., Schulz, Roland., Páll, S., Smith, C. J., Hess, B., and Lindahl, Eric. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX. 1-2 (2015), 19--25.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Simulation Study for Wild-Type and C101F Mutant of LIM2 Domain in FHL1

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in
        • Published in

          cover image ACM Other conferences
          ICBBB '18: Proceedings of the 2018 8th International Conference on Bioscience, Biochemistry and Bioinformatics
          January 2018
          164 pages
          ISBN:9781450353410
          DOI:10.1145/3180382

          Copyright © 2018 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 18 January 2018

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article
          • Research
          • Refereed limited
        • Article Metrics

          • Downloads (Last 12 months)1
          • Downloads (Last 6 weeks)0

          Other Metrics

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader