skip to main content
10.1145/3180382.3180390acmotherconferencesArticle/Chapter ViewAbstractPublication PagesicbbbConference Proceedingsconference-collections
research-article

Coarse-Grained Molecular Dynamics Simulation of Sulerythrin and LARFH for Producing Protein Nanofibers

Authors Info & Claims
Published:18 January 2018Publication History

ABSTRACT

Artificial creation of fibers utilizing proteins has been a target of bionanotechnology. Yagi et al. succeeded in designing artificial protein fibers using two types of proteins: LARFH and sulerythrin. Binding interfaces were designed for sulerythrin and LARFH by introducing mutations, and the fibrous structures were confirmed by atomic force microscopy. However, branching was observed in the fibrous structure, possibly because of non-specific interactions between the proteins. In this study, we analyzed the behavior and binding sites of sulerythrin mutants and LARFH mutants using coarse-grained molecular dynamics (MD) simulation. Binding simulations were performed for a system of one sulerythrin and one LARFH, and also of two sulerythrin molecules and four LARFH molecules. These results suggested that glutamic acids originally possessed by sulerythrin contribute to non-specific binding at sites other than the designed interfaces.

References

  1. Grueninger, D., Treiber, N., Ziegler, M. O., Koetter, J. W., Schulze, M. S., and Schulz, G. E. 2008. Designed protein-protein association. Science 319 (Jan. 2008), 206--209.Google ScholarGoogle ScholarCross RefCross Ref
  2. Padilla, J. E., Colovos, C., and Yeates, T. O. 2001. Nanohedra: Using symmetry to design self assembling protein cages, layers, crystals, and filaments. P. Natl. Acad. Sci. USA 98 (Feb. 2001), 2217--2221.Google ScholarGoogle ScholarCross RefCross Ref
  3. King, N. P., Bale, J. B., Sheffler, W., McNamara, D. E., Gonen, S., Gonen, T., Yeates, T. O., and Baker, D. 2014. Accurate design of co-assembling multi-component protein nanomaterials, Nature 510 (May 2014), 103--108.Google ScholarGoogle ScholarCross RefCross Ref
  4. Karanicolas, J., Corn, J. E., Chen, I., Joachimiak, L. A., Dym, O., Peck, S. H., Albeck, S., Unger, T., Hu, W., Liu, G., Delbecq, S., Montelione, G. T., Spiegel, C. P., Liu, D. R., and Baker, D. 2011. A de novo protein binding pair by computational design and directed evolution. Mol. Cell. 42 (Apr. 2011), 250--260.Google ScholarGoogle ScholarCross RefCross Ref
  5. Yagi, S., Akanuma, S., and Yamagishi, A. 2014. Addition of negatively charged residues can reverse the decrease in the solubility of an acidic protein caused by an artificially introduced non-polar surface patch. Biochim. Biophys. Acta. 1844 (Mar. 2014), 553--560.Google ScholarGoogle ScholarCross RefCross Ref
  6. Akanuma, S., Matsuba, T., Ueno, E., Umeda, N., and Yamagishi, A. 2010. Mimicking the evolution of a thermally stable monomeric four-helix bundle by fusion of four identical single- helix peptides. J. Biochem. 147 (Mar. 2010), 371--379.Google ScholarGoogle ScholarCross RefCross Ref
  7. Yagi, S., Akanuma, S., Yamagishi, M., Uchida, T., and Yamagishi, A. 2016. De novo design of protein--protein interactions through modification of inter-molecular helix--helix interface residues. Biochim. Biophys. Acta 1864 (May 2016), 479--487.Google ScholarGoogle ScholarCross RefCross Ref
  8. Guex, N. and Peitsch, M. C. 1997. SWISS-MODEL and the Swiss-Pdb Viewer: An environment for comparative protein modeling. Electrophoresis 18 (1997), 2714--2723.Google ScholarGoogle ScholarCross RefCross Ref
  9. Berendsen, H. J. C., van der Spoel, D., and van Drunen, R. 1995. GROMACS: A message-passing parallel molecular dynamics implementation. Comp. Phys. Comm. 91 (Sept. 1995) 43--56.Google ScholarGoogle Scholar
  10. Lindahl, E., Hess, B., and van der Spoel, D. 2001. GROMACS 3.0: package for molecular simulation and trajectory analysis. J. Mol. Model. 7 (Aug. 2001), 306--317.Google ScholarGoogle Scholar
  11. van der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A. E., Berendsen, H. J. C. 2005. GROMACS: Fast, flexible, and free. J. Comput. Chem 26 (Oct. 2005) 1701--1718.Google ScholarGoogle Scholar
  12. Hess, B., Kutzner, C., van der Spoel, D., Lindahl, E. 2008. GROMACS 4: Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular simulation. J. Chem. Theory Comput. 4 (Feb. 2008), 435--447.Google ScholarGoogle Scholar
  13. Pronk, S., Páll, S., Schulz, R., Larsson, P., Bjelkmar, P., Apostolov, R., Shirts, M. R., Smith, J. C., Kasson, P., M., van der Spoel, D., Hess, B., and Lindahl, E. 2013. GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics 29 (Apr. 2013), 845--854. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Szilárd, P., Abraham, M. J., Kutzner, C., Hess, B., and Lindahl, E. 2015. Tacking Exascale Software Challenges in Molecular Dynamics Simulations with GROMACS. Proc. of EASC 2015 LNCS, 8759 (Feb. 2015), 3--27.Google ScholarGoogle Scholar
  15. Abraham, J. M., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., and Lindahl, E. 2015. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1-2 (Sept. 2015), 19--25.Google ScholarGoogle ScholarCross RefCross Ref
  16. Monticelli, L., Kandasamy, S. K., Periole, X., Larson, R. G., Tieleman, D. P., and Marrink, S. J. 2008. The MARTINI coarse-grained force field: extension to proteins. J. Chem. Comput. 4 (Apr. 2008), 819--834.Google ScholarGoogle Scholar
  17. Marrink, S. J., Risselada, H. J., Yefimov, S., Tielema, D. P., and Vries, A. H. 2007. The MARTINI Force Field: Coarse Grained Model for Biomolecular Simulations. J. Phys. Chem. 111 (June 2007), 7812--7824.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Coarse-Grained Molecular Dynamics Simulation of Sulerythrin and LARFH for Producing Protein Nanofibers

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Other conferences
        ICBBB '18: Proceedings of the 2018 8th International Conference on Bioscience, Biochemistry and Bioinformatics
        January 2018
        164 pages
        ISBN:9781450353410
        DOI:10.1145/3180382

        Copyright © 2018 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 18 January 2018

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article
        • Research
        • Refereed limited
      • Article Metrics

        • Downloads (Last 12 months)2
        • Downloads (Last 6 weeks)0

        Other Metrics

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader