skip to main content
10.1145/3183713.3190664acmconferencesArticle/Chapter ViewAbstractPublication PagesmodConference Proceedingsconference-collections
research-article

Structured Streaming: A Declarative API for Real-Time Applications in Apache Spark

Published:27 May 2018Publication History

ABSTRACT

With the ubiquity of real-time data, organizations need streaming systems that are scalable, easy to use, and easy to integrate into business applications. Structured Streaming is a new high-level streaming API in Apache Spark based on our experience with Spark Streaming. Structured Streaming differs from other recent streaming APIs, such as Google Dataflow, in two main ways. First, it is a purely declarative API based on automatically incrementalizing a static relational query (expressed using SQL or DataFrames), in contrast to APIs that ask the user to build a DAG of physical operators. Second, Structured Streaming aims to support end-to-end real-time applications that integrate streaming with batch and interactive analysis. We found that this integration was often a key challenge in practice. Structured Streaming achieves high performance via Spark SQL's code generation engine and can outperform Apache Flink by up to 2x and Apache Kafka Streams by 90x. It also offers rich operational features such as rollbacks, code updates, and mixed streaming/batch execution. We describe the system's design and use cases from several hundred production deployments on Databricks, the largest of which process over 1 PB of data per month.

References

  1. Daniel J. Abadi, Yanif Ahmad, Magdalena Balazinska, Mitch Cherniack, Jeong hyon Hwang, Wolfgang Lindner, Anurag S. Maskey, Er Rasin, Esther Ryvkina, Nesime Tatbul, Ying Xing, and Stan Zdonik. 2005. The design of the borealis stream processing engine In CIDR. 277--289.Google ScholarGoogle Scholar
  2. Tyler Akidau, Robert Bradshaw, Craig Chambers, Slava Chernyak, Rafael J. Fernández-Moctezuma, Reuven Lax, Sam McVeety, Daniel Mills, Frances Perry, Eric Schmidt, and Sam Whittle. 2015. The Dataflow Model: A Practical Approach to Balancing Correctness, Latency, and Cost in Massive-scale, Unbounded, Out-of-order Data Processing. Proc. VLDB Endow., Vol. 8, 12 (Aug.. 2015), 1792--1803. /10.1145/223784.223848 Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Structured Streaming: A Declarative API for Real-Time Applications in Apache Spark

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Conferences
        SIGMOD '18: Proceedings of the 2018 International Conference on Management of Data
        May 2018
        1874 pages
        ISBN:9781450347037
        DOI:10.1145/3183713

        Copyright © 2018 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 27 May 2018

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

        Acceptance Rates

        SIGMOD '18 Paper Acceptance Rate90of461submissions,20%Overall Acceptance Rate785of4,003submissions,20%

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader