skip to main content
10.1145/3193063.3193069acmotherconferencesArticle/Chapter ViewAbstractPublication PagesiciitConference Proceedingsconference-collections
research-article

An Overview of Techniques for Confirming Big Data Property Rights

Published:26 February 2018Publication History

ABSTRACT

The major premise of big data circulation is to identify the ownership of data resource. This paper summed some feasible techniques and methods for confirming big data property which are data citation technology, data provenance technology, data reversible hiding technology, computer forensic technology and block chain technology. The ownership of information property which from different sizes, different formats and different storage condition on distributed heterogeneous platforms can be confirmed by comprehensive application of these techniques and methods based on the coupling interface between them in the practice of big data.

References

  1. White, H. 1982. Citation analysis of data files use {J}.Library Trends. 31 (3), 467--477.Google ScholarGoogle Scholar
  2. Jim, G. One Science---A transformed scientific method{C}/ / Tony H, Stewart T, Kirstin T. 2009.The Fourth Paradigm: Data-intensive Scientific Discovery. Redmond, WA: Microsoft Research. 19--33.Google ScholarGoogle Scholar
  3. Altman, M. and King, G. 2007. A proposed standard for the scholarly citation of quantitative data {J/OL}. D-Lib Magazine. 13 (3 /4). {2017-02-08} http://www.dlib.org/dlib/march07/altman/03altman.html.Google ScholarGoogle Scholar
  4. Green, T. 2017. We need publishing standards for datasets and data tables. OECD Publishing White Paper {EB/OL}. http://www.ingentaconnect.com/content/alpsp/lp/2009/00000022/00000004/art00011?Google ScholarGoogle ScholarCross RefCross Ref
  5. Li Dandan and Wu Zhenxin. 2013. Research on research data citation {J}.Library Journal. (5), 65--71.Google ScholarGoogle Scholar
  6. Altman, M. 2008. A Fingerprint Method for Scientific Data Verification //Advances in Computer and Information Sciences and Engineering. 311--316.Google ScholarGoogle Scholar
  7. Qu Baoqiang and Wang Kai. 2015. Emergence and development of the data paper {J}.Library & Information. (5), 1--8.Google ScholarGoogle Scholar
  8. Hey, T. 2012. The Fourth Paradigm: Data-Intensive Scientific Discovery {M}// E-Science and Information Management. Springer Berlin Heidelberg, 1.Google ScholarGoogle Scholar
  9. Wang Weihua, Hu Lianglin and Shen Zhihong. 2013. Development of scientific data reference specification {J}. China Science & Technology Resources Review. (1), 36--40.Google ScholarGoogle Scholar
  10. Hou Jinghuan, Fang Jingyi. 2013. Review on data citation in the context of big data {J}. Journal of Library Science in China. (1), 112--118.Google ScholarGoogle Scholar
  11. Wang Cuiping, Li Baiyang. 2015. Research on data--intensive sciences--oriented data citation analysis {J}. Information and Documentation Services. (3), 10--14.Google ScholarGoogle Scholar
  12. Mayernik, M. 2013. Bridging Data Lifecycles: Tracking Data Use via Data Citations Workshop Report{R/OL}. http://nldr.library.ucar.edu/repository/assets/technotes/TECH-NOTE-000-000-000-860.Google ScholarGoogle Scholar
  13. Dai Chaofan, Wang Tao, Zhang Pengcheng. 2010. Survey of data provenance technique {J}. Application research of computers. 27 (9), 3216--3221.Google ScholarGoogle Scholar
  14. Simmhan, Y. L., Plale B. and Gannon D. 2005. A survey of data provenance in e-science {J}. Acm Sigmod Record. 34 (3), 31--36. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Chiticariu L, Tan W C and Vijayvargiya G. 2005. DB Notes: a post-it system for relational databases based on provenance{C}// ACM SIGMOD International Conference on Management of Data. Baltimore, Maryland, USA, June. DBLP, 942--944. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Zhao Y, Wilde M and Foster I. 2006. Applying the Virtual Data Provenance Model {J}. Lecture notes Computer. Sci. 4145, 148--161. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Li Yazi. 2007. Data provenance's annotation schema and description model {J}. New Technology of Library and Information Service. (7), 10--13.Google ScholarGoogle Scholar
  18. Bose R. 2002. A conceptual framework for composing and managing scientific data lineage{C}// International Conference on Scientific and Statistical Database Management. DBLP, 15--19. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Deng Zhonghua and Wei Yinzhen. 2014. Study on the method of provenance in science workflow for data publishing {J}. Library & Information. (3), 61--66.Google ScholarGoogle Scholar
  20. Wang Y R. and Madnick S E. 1990. A polygon model for heterogeneous database systems: the source tagging perspective{C}// Proceedings of International Conference on Very Large Data Bases. Brisbane, Queensland, Australia, DBLP, 519--538. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Fan H. 2002. Tracing Data Lineage Using Automated Schema Transformation Pathways {M}// Advances in Databases. Springer Berlin Heidelberg, 50--53. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Buneman P, Khanna S. and Tan W C. 2004. Why and Where: A Characterization of Data Provenance{C}// International Conference on Database Theory. Springer-Verlag. 316--330. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Green T J, Karvounarakis G, and Tannen V. 2007. Provenance semi-rings {J}. Pods'07 Bejing. 72 (3), 289--292. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Ram S. and Liu J. 2009. A New Perspective on Semantics of Data Provenance{C}// International Workshop on the Role of Semantic Web in Provenance Management. DBLP. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Freire J. and Anand M K. 2007. Provenance in scientific workflow systems {J}. Bulletin of the Technical Committee on Data Engineering. 30 (4), 44--50.Google ScholarGoogle Scholar
  26. Golbeck J. and Hendler J. 2008. A Semantic Web approach to the provenance challenge {J}. Concurrency & Computation Practice & Experience. 20 (5), 431--439. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Wei Yinzhen and Deng Zhonghua. 2015. A provenance framework for scientific workflow {J}. Information Studies: Theory & Application. (7), 115--118, 114.Google ScholarGoogle Scholar
  28. Hey T., Tansley S. and Tolle K. 2009. The fourth paradigm {M}. Microsoft Press. 17--18.Google ScholarGoogle Scholar
  29. Cui Y. and Widom J. 2003. Lineage tracing for general data warehouse transformations {J}. The VLDB Journal. 12 (1), 41--58. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Chen Ying. 2008. A Data Provenance Model Based on the Double - helical Structure of DNA. {J} New Technology of Library and Information Service. (10), 11--15.Google ScholarGoogle Scholar
  31. Moreau L. and Groth P. 2013. PROV-Overview: An overview of the PROV family of documents {J}. PW3C Note. (4), 1--9.Google ScholarGoogle Scholar
  32. CCSDS Secretariat, Program Integration Division (Code M-), National Aeronautics and Space Administration. Reference Model for an Open Archival Information System (OAIS){M}. Washington DC, USA. CCSDS. Secretariat. 2002.Google ScholarGoogle Scholar
  33. Lin Fangfang and Zhao Hui. 2016. Research on data traceability model and DC meta data mapping {J}. Digital Library Forum. (3), 10--16.Google ScholarGoogle Scholar
  34. Ke Jie, Dong Hanbin, Liang Yiwen, Tan Chengyu and Ai Yong. 2015. APROV based representation of data provenance for ETL process {J}. Journal of SiChuan University, (5), 123--129.Google ScholarGoogle Scholar
  35. Freitas A, Kampgen B, Oliveira J G, et al. 2012. Representing Interoperable Provenance Descriptions for ETL Workflows{M}. // The Semantic Web: ESWC 2012 Satellite Events. Berlin: Springer, 43--57.Google ScholarGoogle Scholar
  36. Petitcolas F A P, Anderson R J. and Kuhn M G. 1999. Information hiding-a survey {J}. Proceedings of the IEEE. 87 (7), 1062--1078.Google ScholarGoogle ScholarCross RefCross Ref
  37. Katzenbeisser S. and Petitcolas F A. 2000. Information Hiding Techniques for Steganography and Digital Watermarking {J}. Edpacs the Edp Audit Control & Security Newsletter. 28 (6), 95--172.Google ScholarGoogle Scholar
  38. Artz D. 2001. Digital steganography: hiding data within data {J}. Internet Computing IEEE. 5 (3), 75--80. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Fridrich J., Goljan M. and Du R. 2001. Invertible authentication {C}∥Proceedings of SPIE Photonics West, Security and Watermarking of Multimedia Contents III, San Jose, California, USA. 197--208.Google ScholarGoogle Scholar
  40. Celik M U., Sharma G. and Tekalp A M., et al. 2005. Lossless generalized-LSB data embedding {J}. IEEE Transactions on Image Processing A Publication of the IEEE Signal Processing Society. 14 (2), 253--66. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Agrawal R. and Kiernan J. 2002. Watermarking Relational Database {J}. Journal of Pla University of Science & Technology. 3 (1), 71--79.Google ScholarGoogle Scholar
  42. Fu Y, Jin C. and Ma C. 2007. A Novel Relational Database Watermarking Algorithm{M}// Intelligence and Security Informatics. Springer Berlin Heidelberg. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Sion A P. 2011. Watermarking Relational Databases {J}. Proceedings of SPIE - The International Society for Optical Engineering. 8349 (1), 79.Google ScholarGoogle Scholar
  44. Zhang Yong, Zhao Dongning and Li Deyi. 2003. Digital watermarking for relational databases {J} Computer Engineering and Applications. (25), 193--195.Google ScholarGoogle Scholar
  45. Yu Zhiqiang. 2008. Watermarking techniques for multimedia authentication and copyright protection {D}.Xi'an: Northwestern Polytechnical University.Google ScholarGoogle Scholar
  46. He Jianbang, Lue Guonian and Wu Pingsheng. 2010. Study on property right protection of geographic information {M}. Beijing: Science Press. 337--418.Google ScholarGoogle Scholar
  47. Jiang Bin. Research on text carrier information hiding and related technology.{D}. Zhengzhou: PLA information engineering university,2008.Google ScholarGoogle Scholar
  48. Scheindlin S A. and Rabkin J. 2000. Electronic Discovery in Federal Civil Litigation: Is Rule 34 Up to the Task? {J}. Boston College Law Review. 41 (2), 327--382.Google ScholarGoogle Scholar
  49. Kruse Ii W G. and Heiser J G. 2001. Computer forensics: incident response essentials {M}. Addison Wesley Pub Co Inc.Google ScholarGoogle Scholar
  50. Zhang Chao. 2010. Under cloud calculative environment electronic data investigation and evidence collection {J}. Netinfo Security. (11), 52--54.Google ScholarGoogle Scholar
  51. Wu Shaobing. 2012. Research of key technologies of electronic evidence forensics based on cloud computing environment. {J}. Computer Science. (11), 139--142.Google ScholarGoogle Scholar
  52. Jin Bo, Yang Tao, Wu Songyang, Huang Daoli and Guo Hong. 2016. Review of digital forensics {J}.Chinese Journal of Forensic Sciences. (1), 62--74.Google ScholarGoogle Scholar
  53. Guo Hong and Xu ZhiQiang. 2016. Status and trends of electronic data forensics equipment and software {J}.Secrecy Science and Technology. (3), 28--34.Google ScholarGoogle Scholar
  54. Shao Zehui. 2014. The method of tracing data based on trusted digital forensics {D}. Nanjing: Nanjing University of Posts and Telecommunications,Google ScholarGoogle Scholar
  55. Satoshi Nakamoto. 2017. Bitcoin: A Peer-to-Peer Electronic Cash System. {EB/OL}. https://bitcoin.org/bitcoin.pdfGoogle ScholarGoogle Scholar
  56. Swan M. 2015. Blockchain: Blueprint for a New Economy {M}. USA: O'Reilly Media, Inc. Google ScholarGoogle ScholarDigital LibraryDigital Library
  57. Yuan Yong and Wang Feiyue. 2016. Blockchain: The state of the art and future trends {J}. Acta Automatica Sinica, (4), 481--494.Google ScholarGoogle Scholar
  58. Shen Xin, Pei Qingqi and Liu Xuefeng. 2016. Survey of block chain {J}. Chinese journal of network and information security. (11), 11--20.Google ScholarGoogle Scholar
  59. Zhao He, Li Xiaofeng, Zhan Likui and Wu Zhongcheng. 2015. Data integrity protection method for microorganism sampling robots based on blockchain technology {J}. Huangzhong University of Sci and Tech, (Z1), 216--219.Google ScholarGoogle Scholar
  60. Huang Yonggang. 2016. Block chain technology-based security of electronic health records {J}. Chinese Journal of Medical Library and Information Science. (10), 38--40.Google ScholarGoogle Scholar
  61. Liu Nan, Wei Jinwu and Liu Lu. 2016. Big data exchange based on information chain {J}. Telecommunications Science. (10), 130--13.Google ScholarGoogle Scholar

Index Terms

  1. An Overview of Techniques for Confirming Big Data Property Rights

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Other conferences
      ICIIT '18: Proceedings of the 2018 International Conference on Intelligent Information Technology
      February 2018
      76 pages
      ISBN:9781450363785
      DOI:10.1145/3193063

      Copyright © 2018 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 26 February 2018

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article
      • Research
      • Refereed limited

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader