skip to main content
10.1145/3195555.3195556acmconferencesArticle/Chapter ViewAbstractPublication PagesicseConference Proceedingsconference-collections
research-article

Intra-thalamic and thalamocortical connectivity: potential implication for deep learning

Published:28 May 2018Publication History

ABSTRACT

Contrary to the traditional view that the thalamus acts as a passive relay station of sensory information to the cortex, a number of experimental studies have demonstrated the effects of peri-geniculate and cortico-thalamic projections on the transmission of visual input. In the present study, we implemented a mechanistic model to facilitate the understanding of peri-geniculate and cortico-thalamic effects on the transfer function of geniculate cells and their firing patterns. As a result, the model successfully captures some fundamental properties of early-stage visual processing in mammalian brain. We conclude, therefore, that the thalamus is not a passive relay center and the intra-thalamic circuitry is of great importance to biological vision. In summary, intra-thalamic and thalamocortical circuitries have implications in early-stage visual processing, and could constitute a valid tool for refining information relay and compression in artificial neural networks (ANN), leading to deep learning models of higher performance.

References

  1. N. T. Carnevale and M. L. Hines. 2006. The NEURON book. Cambridge University Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. A. Destexhe, D. Contreras, and M. Steriade. 1998. Mechanisms underlying the synchronizing action of corticothalamic feedback through inhibition of thalamic relay cells. Journal of neurophysiology 79, 2 (1998), 999--1016.Google ScholarGoogle ScholarCross RefCross Ref
  3. A. Destexhe, D. Contreras, M. Steriade, T.J. Sejnowski, and J. R. Huguenard. 1996. In vivo, in vitro, and computational analysis of dendritic calcium currents in thalamic reticular neurons. Journal of Neuroscience 16, 1 (1996), 169--185.Google ScholarGoogle ScholarCross RefCross Ref
  4. A. Destexhe, M. Neubig, D. Ulrich, and J. Huguenard. 1998. Dendritic low-threshold calcium currents in thalamic relay cells. Journal of Neuroscience 18, 10 (1998), 3574--3588.Google ScholarGoogle ScholarCross RefCross Ref
  5. J. J. DiCarlo, D. Zoccolan, and N. C. Rust. 2012. How does the brain solve visual object recognition? Neuron 73, 3 (2012), 415--434.Google ScholarGoogle ScholarCross RefCross Ref
  6. D. J Felleman and D. C. Van Essen. 1991. Distributed hierarchical processing in the primate cerebral cortex. Cerebral cortex (New York, NY: 1991) 1, 1 (1991), 1--47.Google ScholarGoogle Scholar
  7. K. Funke and U. T. Eysel. 1998. Inverse correlation of firing patterns of single topographically matched perigeniculate neurons and cat dorsal lateral geniculate relay cells. Visual neuroscience 15, 4 (1998), 711--729.Google ScholarGoogle Scholar
  8. J. Guerguiev, T. P. Lillicrap, and B. A. Richards. 2017. Towards deep learning with segregated dendrites. eLife 6 (2017).Google ScholarGoogle Scholar
  9. D. Hafner, A. Irpan, J. Davidson, and N. Heess. {n. d.}. Learning Hierarchical Information Flow with Recurrent Neural Modules. In Advances in Neural Information Processing Systems. 6727--6736.Google ScholarGoogle Scholar
  10. G. Halnes, S. Augustinaite, P. Heggelund, G. T. Einevoll, and M. Migliore. 2011. A multi-compartment model for interneurons in the dorsal lateral geniculate nucleus. BMC neuroscience 12, 1 (2011), P222.Google ScholarGoogle Scholar
  11. J. Hawkins, S. Ahmad, and Y. Cui. 2017. A Theory of How Columns in the Neocortex Enable Learning the Structure of the World. Frontiers in neural circuits 11 (2017), 81.Google ScholarGoogle Scholar
  12. M. L. Hines and N. T. Carnevale. 1997. The NEURON simulation environment. Neural computation 9, 6 (1997), 1179--1209. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. M. L. Hines, A. P. Davison, and E. Muller. 2009. NEURON and Python. Frontiers in neuroinformatics 3 (2009), 1.Google ScholarGoogle Scholar
  14. A. L. Hodgkin and A. F. Huxley. 1952. A quantitative description of membrane current and its application to conduction and excitation in nerve. The Journal of physiology 117, 4 (1952), 500--544.Google ScholarGoogle ScholarCross RefCross Ref
  15. D. H. Hubel and T. N. Wiesel. 1962. Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. The Journal of physiology 160, 1 (1962), 106--154.Google ScholarGoogle ScholarCross RefCross Ref
  16. E. Kaplan, K. Purpura, and R. M. Shapley. 1987. Contrast affects the transmission of visual information through the mammalian lateral geniculate nucleus. The Journal of physiology 391, 1 (1987), 267--288.Google ScholarGoogle ScholarCross RefCross Ref
  17. Y-W. Lam and S. M. Sherman. 2005. Mapping by laser photostimulation of connections between the thalamic reticular and ventral posterior lateral nuclei in the rat. Journal of Neurophysiology 94, 4 (2005), 2472--2483.Google ScholarGoogle ScholarCross RefCross Ref
  18. D. Marr. 1982. Vision: A computational approach. (1982).Google ScholarGoogle Scholar
  19. D. A. McCormick and T. Bal. 1997. Sleep and arousal: thalamocortical mechanisms. Annual review of neuroscience 20, 1 (1997), 185--215.Google ScholarGoogle Scholar
  20. T. M. McKenna, J. L. Davis, and S. F. Zornetzer. 2014. Single neuron computation. Academic Press.Google ScholarGoogle Scholar
  21. J. Rogala, W.J. Waleszczyk, S.Łęski, A. Wróbel, and D. K. Wójcik. 2013. Reciprocal inhibition and slow calcium decay in perigeniculate interneurons explain changes of spontaneous firing of thalamic cells caused by cortical inactivation. Journal of computational neuroscience 34, 3 (2013), 461--476. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. S. Sabour, N. Frosst, and G. E. Hinton. {n. d.}. Dynamic routing between capsules. In Advances in Neural Information Processing Systems. 3859--3869.Google ScholarGoogle Scholar
  23. M. V. Sanchez-Vives, T. Bal, and D. A. McCormick. 1997. Inhibitory interactions between perigeniculate GABAergic neurons. Journal of Neuroscience 17, 22 (1997), 8894--8908.Google ScholarGoogle ScholarCross RefCross Ref
  24. G. Sclar. 1987. Expression of "retinal" contrast gain control by neurons of the cat's lateral geniculate nucleus. Experimental Brain Research 66, 3 (1987), 589--596.Google ScholarGoogle ScholarCross RefCross Ref
  25. S. M. Sherman. 2004. Interneurons and triadic circuitry of the thalamus. Trends in neurosciences 27, 11 (2004), 670--675.Google ScholarGoogle Scholar
  26. S. M. Sherman and R. W. Guillery. 2001. Exploring the thalamus. Elsevier.Google ScholarGoogle Scholar
  27. S. M. Sherman and C. Koch. 1986. The control of retinogeniculate transmission in the mammalian lateral geniculate nucleus. Experimental Brain Research 63, 1 (1986), 1--20.Google ScholarGoogle ScholarCross RefCross Ref
  28. A. M. Sillito and H. E. Jones. 2002. Corticothalamic interactions in the transfer of visual information. Philosophical Transactions of the Royal Society B: Biological Sciences 357, 1428 (2002), 1739--1752.Google ScholarGoogle ScholarCross RefCross Ref
  29. M. Steriade, L. Domich, G. Oakson, and M. Deschenes. 1987. The deafferented reticular thalamic nucleus generates spindle rhythmicity. Journal of neurophysiology 57, 1 (1987), 260--273.Google ScholarGoogle ScholarCross RefCross Ref
  30. W. J Waleszczyk, M. Bekisz, and A. Wróbel. 2005. Cortical modulation of neuronal activity in the cat's lateral geniculate and perigeniculate nuclei. Experimental neurology 196, 1 (2005), 54--72.Google ScholarGoogle Scholar
  31. A. Wohrer and P. Kornprobst. 2009. Virtual retina: a biological retina model and simulator, with contrast gain control. Journal of computational neuroscience 26, 2 (2009), 219--249.Google ScholarGoogle ScholarCross RefCross Ref

Recommendations

Comments

Login options

Check if you have access through your login credentials or your institution to get full access on this article.

Sign in
  • Published in

    cover image ACM Conferences
    SE4COG '18: Proceedings of the 1st International Workshop on Software Engineering for Cognitive Services
    May 2018
    72 pages
    ISBN:9781450357401
    DOI:10.1145/3195555

    Copyright © 2018 ACM

    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    • Published: 28 May 2018

    Permissions

    Request permissions about this article.

    Request Permissions

    Check for updates

    Qualifiers

    • research-article

    Upcoming Conference

    ICSE 2025
  • Article Metrics

    • Downloads (Last 12 months)3
    • Downloads (Last 6 weeks)0

    Other Metrics

PDF Format

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader