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ABSTRACT 
The mobile app market is evolving at a very fast pace. In order to 
stay in the market and fulfll user’s growing demands, developers 
have to continuously update their apps either to fx issues or to add 
new features. Users and market managers may have a hard time 
understanding what really changed in a new release though, and 
therefore may not make an informative guess of whether updating 
the app is recommendable, or whether it may pose new security 
and privacy threats for the user. 

We propose a ready-to-use framework to analyze the evolution of 
Android apps. Our framework extracts and visualizes various infor­
mation —such as how an app uses sensitive data, which third-party 
libraries it relies on, which URLs it connects to, etc.— and combines 
it to create a comprehensive report on how the app evolved. 

Besides, we present the results of an empirical study on 235 appli­
cations with at least 50 releases using our framework. Our analysis 
reveals that Android apps tend to have more leaks of sensitive data 
over time, and that the majority of API calls relative to dangerous 
permissions are added to the code in releases posterior to the one 
where the corresponding permission was requested. 

1 INTRODUCTION 
Android has overtaken Microsoft Windows for the first time as the 
world’s most popular OS in terms of total Internet usage across 
desktop, laptop, tablet and mobile combined1. This growth means 
that the Android ecosystem now has numerous, fast evolving, com­
petitive markets. To remain appealing for users and avoid them 
migrating to alternative apps, developers have to continuously up­
date their apps to provide new features and address bug fixes as fast 
as possible. Frequently updated apps also have better visibility on 
the mobile stores. This fact, along with the high competitiveness of 
the market, ensures that popular Android apps are released on a 
monthly or even weekly basis. 

1 http://gs.statcounter.com/press/android-overtakes-windows-for-frst-time 

While frequent release cycles are beneficial to be ahead of the 
curve, they also cause problems for market managers and final users. 
Market managers, such as Google for its Google Play Store, need to 
analyze every single version before approving it for publishing to 
the store. Final users, on the other hand, receive updates for the apps 
installed on their devices transparently, as by default the Android 
system notifies them only when there are substantial changes in the 
list of permissions that the app requests. Informed users, however, 
cannot easily understand how the behavior of an app changed with 
an app release, as most of the changes happen beyond the user 
interface and the list of requested permissions, which is what users 
can easily analyze. 

An app which already has access to the Internet may suddenly 
start establishing connections with suspicious hosts after a new 
release. If the app processes some sensitive data, such as the user’s 
contact list, it could suddenly start sending this information to a 
third party server. Without a proper understanding of what changed 
in the new version of an app, it is hard to take an informative guess 
of whether an update is beneficial or harmful to the user’s security 
and privacy. 

This paper presents Cartographer, a ready-to-use framework for 
users and market managers to analyze the evolution of an Android 
application. Cartographer extracts and visualizes various infor­
mation: 1) it shows how an app uses sensitive data, thanks to a 
customized static data flow analysis; 2) it aims to identify the list of 
third-party libraries that the app uses, even if obfuscated; 3) it ex­
tracts the network traffic to have a list of hosts the application talks 
to; 4) it statically extracts sensitive Android APIs the application 
uses. Cartographer runs these analyses separately and combines the 
results to create a comprehensive report on how the app evolved. 

This is not the first paper that aims to analyze how Android 
apps evolve in their behavior. While many of the existing litera­
ture regarding Android application evolution focus on dangerous 
permissions [10, 26, 28], in this paper we take a wider approach to 
have a more in-depth understanding of what changes between dif­
ferent releases. We use Cartographer to empirically analyze 14,880 
releases. Our dataset comprises 235 applications with at least 50 
releases. 



Our analysis reveals that Android applications tend to have more 
leaks of sensitive data over time, in line with what Ren et al. re­
ports [24]. Though, the growth is largely determined by third-party 
libraries. Our study also shows that the majority of API calls relative 
to dangerous permissions are added to the code in releases posterior 
to the one where the corresponding permission was requested, and 
that the vast majority of data fows only exists for a limited number 
of versions. 

The remainder of the paper is structured as follows: 

• Section 2 presents the information that defnes the domain 
of Android applications and their versioning. 

• Section 3 presents our tool and explains its workfow. 
• Section 4 reports our fnding, characterizing the evolution 

of data fows we encountered in our dataset. 
• Section 5 presents the related work. 
• Section 6 contains limitations and threats to validity. 
• Finally, Section 7 summarizes our fndings. 

2 THE ANDROID ECOSYSTEM 
Android developers can distribute their apps through markets such 
as the Google Play Store. It allows users to easily access new app 
releases, as they can be downloaded by default on any mobile device. 

Diferent Android releases of the same app can be distinguished 
thanks to two identifers. The versionCode is an automatically 
generated integer used for internal versioning. This number can de­
termine whether one release is more recent than another. A greater 
value of the versionCode indicates that the release is successive to 
any other with a lower value. This number does not necessarily 
have a strong resemblance to the app release version that is visi­
ble to the user. The second identifer is versionName string. Most 
developers defne versionNames in the format major.minor, but 
such convention is not enforced. Moreover, versionNames are not 
necessarily unique across releases. This value has no purpose other 
than to be displayed to users. 

Google Play allows developers to publish multiple APKs for the 
same release to support devices with diferent requirements such 
as screen sizes and CPU architectures 2: those APKs share the same 
versionName. 

Each application comes with a manifest fle, which contains 
essential information about the app: the Java package name that 
uniquely identifes the app; the list of Android components that the 
app ofers— activities, services, broadcast receivers, and content 
providers; the list of permissions that the app requests to access 
protected parts of the API and interact with other applications; 
the minimum Android framework release required; and the list of 
native libraries that the app must be linked to. 

Beside the manifest fle, the APK contains all the binary code 
fles of the app and resources. The content of an APK is divided 
into separate folders. Resources have their own folder. The draw-
able folder contains graphics to be shown on the screen, including 
bitmaps, shapes, and animations. The layout folder contains XML 
fles that specify the user interface layouts. A layout defnes the 
visual structure for a user interface, such as the UI for a screen or 
app widget. 

As of Android 6.0, its security model is based on a runtime per­
mission mechanism. The two most important protection levels are 
normal and dangerous permissions. The frst o nes p rotect func­
tionalities that pose very little risk to the user’s privacy. If an app 
requests a normal permission, the system automatically grants 
it. Dangerous permissions protect data or resources that involve 
user’s private information. The user has to explicitly grant these 
permissions to the app when requested. With the new permission 
model that Android introduced with API level 23, however, apps 
requesting a dangerous permission would have it automatically 
granted if the user already approved another permission from the 
same group. 

3 ANALYZING THE EVOLUTION OF AN APP 
There are many features that one might look at in order to under­
stand how the behavior changed with a new release of the app. At 
a very high level, one may look at the list of requested permissions 
and assume that no major change occurs in the functionality of the 
app unless this list changes. Still, many subtle things can happen 
without any change in the list of permissions. For instance, an app 
that already had access to sensitive data, such as the contact list, 
may suddenly send this information to a third party server. 

Calciati et al. [10] showed that the vast majority of apps do not 
change their permission list across many releases. As a consequence, 
to properly understand the behavior of a specifc release we have 
to resort to more comprehensive analyses. 

Our framework aims to thoroughly analyze the behavior of an 
app keeping into account several aspects, each of them requiring a 
specifc feature: we analyze the network t rafc to have an under­
standing of which hosts the app talks to; we analyze how sensitive 
data fows across the application, and most importantly if there 
is any leak through the Internet; we analyze the evolution of API 
calls relative to dangerous permissions to discover how developers 
access sensitive information during the app’s lifecycle. We then 
visualize the output of each analysis to make it easy for the users 
to spot any signifcant diference. 

Figure 1 shows the workfow of Cartographer and its main com­
ponents. The workfow is divided into three logical parts. The frst 
one aims to retrieve a signifcant amount of releases for the app of 
interest. The second one is to analyze each APK in isolation using 
diferent analyses. The third and the last one aggregates data and 
visualizes them for the user. 

Each module in the information extraction workfow is imple­
mented within the Calappa toolchain [5] on top of Luigi3. Luigi is 
a Python library that helps developers build complex pipelines of 
batch jobs. Each module can be executed separately, though, they 
are dependent on each other. To exchange information, modules 
produce JSON fles. To achieve scalability, there is an ssh adapter 
that allows to execute tasks on several machines. 

Cartographer visualizes relevant information in the form of a 
heatmap. As a general pattern, for each analysis, the heatmap shows 
on the x-axis the release version numbers and on the y-axis the 
features extracted from the corresponding analysis. We also comple­
ment these data with the location where the feature was found—in 
case of a third-party library we append its name separated by a 

2 https://developer.android.com/google/play/publishing/multiple-apks.html 3https://github.com/spotify/luigi 
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Figure 1: Main components and analysis f ow of Cartogra­
pher 

colon. Columns can be highlighted with a colored fag: red if the 
version name of that release is the same as the previous one, dark 
green if the version name has a major change, and light green for 
minor updates, thus helping to understand whether changes are 
related to the release cycle. 

We now proceed to describe each analysis that Cartographer 
employs and its corresponding module. 

3.1 App Releases Retrieval 
To understand how the behavior of an app changed, it is frst of 
all necessary to retrieve as many previous releases as possible. 
Cartographer supports diferent kinds of Android app sources. It 
requires the package name of an app or a list of packages. We 
implemented adapters for Androzoo [2] and for the F-Droid app 
store 4 to pre-flter and download app releases that satisfy certain 
fltering conditions. After the downloading process is complete, 
Cartographer creates an index list of APKs, which is fed as input to 
the Luigi modules to start the analyses. 

3.2 Application Metadata 
As described in Section 2, APK fles contain essential information 
about the app stored in the Android manifest fle. We extract basic 
information that is fed to other modules to enrich their analysis. 

We use the Android Asset Packaging Tool (aapt) 5 to extract the 
following data: 

• package name 
• version code 
• version name 
• platform build version name 
• available activities 
• Android API level 
• requested dangerous permissions 

First, we verify that package name and version code are con­
sistent with what the APK fle name states and report possible 
mismatches. Next, we heuristically identify the release type, look­
ing at the version name. Usually, this release is a string in the format 
<major>.<minor>.<point>. A change in the frst part of the version 

4https://f-droid.org 
5developer.android.com/guide/topics/manifest/uses-feature-element.html 

name may indicate a major release update, which is expected to 
have substantial diferences. A change in the second part may iden­
tify a release with small changes introduced, while a change in the 
last part should imply just minor changes and some bug fxes. 

Google Play allows to publish diferent APKs each targeting 
diferent Android devices: these releases will have the same version 
name. If Cartographer fnds two consecutive versions with the same 
version name it marks them with a red fag on the heatmap, because 
diferences in these releases could, and should, be due to diferent 
architectures and not to radical changes in the app’s evolution. 

We rely on Androguard 6 to extract the list of overprivileged 
permissions. We defne them as permissions that are declared in 
the AndroidManifest.xml fle, but for which we could not fnd any 
corresponding API use in the application code. 

Finally, we use the APK Parse library 7 to extract all the activities 
listed in the Android Manifest, which we later use to compute the 
activity coverage of dynamic analysis. 

The output of this module is a JSON fle for each application 
package, containing all the aforementioned information for all the 
relative APKs in our dataset. 

3.3 Library Analysis 
Android developers resort to third-party libraries to provide many 
ready-to-use functionalities and services. They may also include 
third-party libraries that show ads only to get some revenue. When 
analyzing the behavior on an app, it is important to distinguish 
whether it comes from the core of the app (i.e. the code that the 
app developer wrote) or from a third-party library, and thus even 
developers may not be fully aware of it. 

The binary code, comprising an app and libraries, comes as a 
single package, and thus the identifcation of libraries in Android is 
not straightforward, especially when code is obfuscated, as proven 
by many studies performed on the subject [6, 18, 19]. In order 
to detect third-party libraries used in Android apps, we resort to 
LibRadar [19]. It detects libraries based on stable API features, which 
are obfuscation resilient. As LibRadar relies on known patterns to 
identify libraries, it can only recognize the ones already presented 
in its model. 

Using our own heuristic we complement the information ex­
tracted by LibRadar to increase the number of identifed libraries. 
We frst use Soot [27] to collect the package names from the full 
names of classes inside an APK. For each package name we extract 
the prefx by removing package components until either the length 
of the prefx is less than 8 characters or there are only two compo­
nents remaining. For example, ak.alizandro.smartaudiobookplayer 
would be reduced to ak.alizandro. We fnally remove all the package 
names whose prefx matches the application package name prefx 
and identify the remaining packages as libraries. In this respect, we 
assume that developers keep the same package prefx across apps 
when reusing code. 

We also truncate packages that contain obfuscated sufxes (e.g. 
com.paypal.a.b to com.paypal), and map completely obfuscated 
packages (e.g. com.b.d or a.b.c) to the specifc OBFUSCATED tag. 

6 https://github.com/androguard/androguard 
7 https://github.com/tdoly/apk_parse 



To improve readability we manually created a mapping of known 
package names to the corresponding libraries (such as com.paypal 
to Paypal). We leave the package name as is for less known libraries. 
This simple heuristic does not work for obfuscated packages but 
still allows to noticeably enhance LibRadar’s results. 

For each application, we produce a heatmap containing on the 
y-axis the libraries that the app includes, highlighting which ones 
are detected by LibRadar (dark blue cells), and which ones are added 
by us (light blue cells). Figure 2 is an example of such heatmap for 
the Smart Audiobook Player app. Some obfuscated libraries, as well 
as the Android Support v4 library are used by the app throughout 
the whole examined lifecycle. During the app’s lifecycle developers 
started adding more libraries, such as the Unseen BASS library, 
which provides sample, stream, and recording functions. 

Figure 2: Libraries included in Smart Audiobook Player 

3.4 Apk Content Analysis 
Cartographer extracts the resources contained in the APKs, aiming 
to understand if there are major changes with respect to previous 
releases. The focus is mostly on the UI, which is the principal chan­
nel through which the user perceives changes in the application. 
We resort to Apktool 8 to extract resource fles, contained in the 
res folder, including strings, drawable resources, and application 
layout fles. In this step we also extract the application code fles, 
contained in the smali folder. 

We use this information to show which changes happened be­
tween releases at the code and layout levels, generating heatmaps 
as output. We compare two releases by analyzing the content of 
each fle present in both packages. If a fle is available in only one 
of the two APKs, we assume that it was either added or removed. 

The resource analysis module outputs two heatmaps: the frst one 
shows relevant information extracted from the Android manifest 
(i.e. how many activities, permissions, providers, receivers and 
services have been added, removed or changed with respect to the 
previous version). The second one, shown in Figure 3, reports the 
changes in code and UI elements between consecutive releases of 
the app. 

The heatmap can be read as follows: 

• the frst two rows show how many UI elements are added 
or removed. This measure tracks changes visible to the user, 
such as adding or removing a button from an Activity. 

• the next three rows (layouts added, removed and changed) 
show the percentage of layout fles that have been added, 

8https://ibotpeaches.github.io/Apktool/ 

Figure 3: Apk Structure of Mobile Print - PrinterShare 

removed or changed, giving a rough idea of how much the 
layout has been changed from the previous version. 

• the following three lines (layout modifcation, insertion and 
deletion) report the percentage of lines in the layout fles 
that have been added, removed or modifed. 

• the drawable and values rows show the percentage of fles 
changed, added and deleted in the drawable and values di­
rectories, which are found inside the res folder and contain 
application’s images for diferent screen sizes and localized 
strings. 

• fnally, the smali row shows the percentage of the code that 
has been added, deleted or modifed (fle based). 

The heatmap cells show the percentage of changes with respect 
to the previous release. We can see from this heatmap that some 
versions, such as 122 and 123, have no changes in the layout at 
all, while in versions 131 and 138 developers heavily modifed the 
layout. Unfortunately, this comparison is not applicable in case of 
obfuscation. 

3.5 Dynamic Analysis of Network Tra fc 
With this module we want to monitor the network trafc generated 
by the application to discover potential security and privacy threats. 
The dynamic analysis uses Monkey, an automated event generator 
created by Android developers, to generate pseudo-random streams 
of user events. Despite the high number of tools available for auto­
matically exercising the application, Monkey was proved to be one 
of the most efective [11]. We use Monkey to execute each APK, 
with three runs of 5 minutes each, while logging the data produced 
by the tcpdump command. 

We use the Bro Network Security Monitor 9 to extract the do­
mains to which each APK connects and then analyze each of them 
on VirusTotal 10 to verify if they are malicious or not. We consider 
a domain as potentially malicious if it is reported as such by at least 
three VirusTotal detection engines. 

For each application we also compute the percentage of activities 
covered, extracting all visited activities with the logcat command 

9https://www.bro.org/ 
10https://www.virustotal.com 



on the emulator and comparing them to the total number of activi­
ties extracted by the module that analyzes the manifest fle. With 
our approach we covered, on average, about 20% of the activities. 

Figure 4: Saycupid Domains Heatmap 

Figure 4 shows the output of the dynamic analysis for the Saycu-
pid application: in the heatmap we highlight in blue which releases 
connect to which domains. From this example we can see that, from 
version 355 on, the application starts connecting to some third party 
analytics services (crashlitics.com and app-measurement.com). 

3.6 Static Analysis of Network T ra fc with 
String Analysis 

As dynamic analysis might miss relevant parts of the code, we 
also implement a module that inspects the bytecode for network 
activity. This module relies on Stringoid [23], a static analysis tool 
that takes as input an APK and produces a set of string patterns 
representing URLs. We use it to extract constructed URL strings 
from applications, estimating the domains the app connects to. 

For each extracted URL, we use the data obtained by Apktool 
and LibRadar to understand if it is used in the main application 
code or in a library, and in the latter case we identify in which 
one. The output of the Stringoid task is a heatmap which shows, 
for each version, which URLs have been found in the code, and 
their corresponding location. The ones found in library code have 
cells colored in light blue, while URLs found in application code 
are represented by dark blue cells. 

Figure 5: Stringoid Heatmap example 

Figure 5 shows the heatmap for the VLC Direct app: we can see 
that starting from version 92 the app includes new URLs related 
to the Google Mobile Services library. By checking the output of 
the libraries module we see in fact that release 92 adds the Google 
Mobile Services library to its code base. 

3.7 API Evolution 
Permissions are an abstract representation of the behavior of an app 
that users easily understand. However, many diferent operations 
are protected by the same permission, and the consideration of just 
permissions would miss relevant details. We thus extract the list of 
API calls that the app makes to the Android framework. 

For this task we use Soot. The frst step is to separate Android 
APIs from other method invocations and only keep the ones re­
lated to dangerous permissions. The process we used to create the 
list of APIs relative to each dangerous permission is explained in 
Section 3.8. 

For each newly added API that requires a dangerous permission, 
whether it appears in the application code or in any third-party 
library, we save the API, the list of available permissions, and the 
list of locations in which the API is used. We then parse the obtained 
APIs and extract the ones for which the required permission was 
already granted in a previous version. 

3.8 Dangerous Permission API Mapping 
Since in our analysis we focus on permissions that could potentially 
afect the user’s privacy, we want to consider only the APIs that 
require a dangerous permission. This task is not straightforward, 
as Google never released an ofcial mapping between API calls and 
permissions, and the list might change with every Android major 
update. Given that a comprehensive mapping of API-permission 
does not exist, many researchers concentrated their eforts on gen­
erating one [4, 7, 8, 13]. 

To create our permission mapping we started from the one 
present in Androguard, which contains over 11,000 APIs. This in­
formation comes from the PScout’s automatically generated map­
pings [4]. It is used by the tool to identify which permissions are 
actually needed by the application’s code. We manually parsed all 
the entries in the mapping, leaving only the ones that we were sure 
would actually require at least one permission, only leaving slightly 
more than 2000 APIs. We proceeded to parse all the mappings 
presented in DPerm [8], and added them to our set. 

After that, for each permission, we manually searched the web 
for how to implement basic functionalities using that permission 
(e.g. when analyzing the SEND_SMS permission we looked for how 
to send an sms). We added all mentioned APIs (such as the send-
TextMessage method from the android.telephony.SmsManager 
class), and fnally manually checked for other APIs in the same 
classes in the ofcial Android developers website (sendDataMessage, 
sendMultimediaMessage and sendMultipartTextMessage methods 
from the android.telephony.SmsManager class). The last step 
was to inspect the source code of Android 6.0, and check all per­
mission annotations and comments mentioning a permission. Our 
fnal mapping contains 2383 APIs. 

3.9 Data Leak Analysis 
Android apps usually access private user data like the list of contacts 
or current location. It is not clear whether the app leaks such sensi­
tive information. To identify data leaks we resort to Flowdroid, the 
state of the art tool for static information fow analysis of Android 
apps [3]. 



The default set of sources (i.e. what sensitive data should be 
tracked) and sinks (i.e. program locations where a leak might hap­
pen) supplied with Flowdroid is very limited and does not include 
all APIs protected by dangerous permissions, signifcantly restrict­
ing the fows detectable by Flowdroid. In Cartographer we extend 
the given list of sources with APIs accessing sensitive information. 
Regarding sinks, we only consider APIs that send data to the Inter­
net or store it to the fle system, which can be a temporary storage 
enabling data leaks at later points in time. 

Starting with the most comprehensive list of sensitive sources 
and sinks as provided by Droidsafe [14] (8,500 sources, 3,700 sinks), 
we gradually remove unrelated APIs, such as ones from the follow­
ing categories: UNMODELED, NFC, SYNCHRONIZATION_DATA, 
DATABASEINFORMATION, BLUETOOTHINFORMATION, GUI. 

Afterwards, we ensure that our fnal selection includes all rele­
vant dangerous APIs introduced in Section 3.8. 

Flowdroid produces data fows in the form: 

sourcemethod0 -> sinkmethod1 

where source and sink are Android API methods; method0 and 
method1 are API call site locations. We leverage the API-permission 
mapping defned in Section 3.8 and library analysis from Section 3.3 
to characterize these fows. We translate them to 

PERMISSIONinr ^ SI NKinr 

pairs, where loc can be either ‘in-app code’ or a particular library 
name. 

Most of the data in the Android system can be accessed via a 
dedicated component, the Content Provider, which provides APIs 
to query, insert, and update data. The data accessed is specifed by 
providing a special URI string when invoking the Content Resolver 
at runtime: for example, access to contacts in address book is done 
by passing the ContactsContract.Contacts.CONTENT_URI string 
as method argument. To know which data is being accessed, we 
need to get the value of the URI parameter. 

In order to map ContentResolver data types, we need to create a 
list of all possible URIs used in the Android platform, which require 
a dangerous permission. We obtain it by manually parsing all the 
classes in the android.provider package from the ofcial Android 
documentation 1 1 . As a result, we substitute content resolver API 
sources with two types of URI values. The frst one is represented by 
constant strings starting with the “content://” prefx. The other one 
is a Uri object which name contains the “CONTENT_URI” string. 
Thus, we use these values as new data sources and only consider 
the data fows that contain content resolver APIs. 

Flowdroid is unable to report the actual URLs and fle paths 
of sinks; thus, we extend it to capture this information. As these 
values are usually passed—sometimes incompletely—into helper 
methods for further assembly, we resort to inter-procedural analysis 
to extract the precise sink destinations. 

We tackle this problem with data fow analysis. APIs that create 
network connections or write to fles are considered to be sinks. 
Conversely, all constant strings matching URL or fle path patterns 

are treated as data sources. The resulting data fows URLfiow link 
URLs to openConnection methods (and fle paths to write invo­
cations) in a context-sensitive manner. For each data fow path 

11https://developer.android.com/reference/android/provider/package- summary.html 

we search for URLfiow with the longest common path s u f x . For 
instance, the fows: 

sourcemethod0 -> node1metkod1 ^node2^^^sink^^od 

URLflow: urlmethod4^node3mth^ 

are transformed into: / 

sourcemethod0 ^ sinkmethod3 -> sink+urlmethod3<-' 

Static analysis is not able to identify all URLs and fle names, as 
some of them are resolved only at runtime. 

As Flowdroid performs static analysis, it might produce over-
approximated results: some fows may be infeasible in practice. One 
example are fows whose sources require a permission which is not 
requested by the application. 

In our analysis we distinguish two type of fows: the most inter­
esting ones are the fows that access user sensitive data, which are 
protected by a dangerous permission, such as the list of contacts. 
The second type of fows contains all fows that access information 
which is either not protected by a dangerous permission, such as 
network settings, or fows that have a source for which we can­
not derive the proper permission, such as unrecognized content 
resolver APIs. When we analyze fows of this latter type, we prefx 
them with the tag NP (non-dangerous permission). 

3.10 Data Analys is 

In the Data Analysis step we combine information from all the 
previous modules to provide a more in-depth analysis. For instance, 
we check whether the application layout changes when a new fow 
appears. 

Figure 6: TripAdvisor Flow 

One example of combining results from diferent scripts is Fig­
ure 6, where we combine data gathered from the FlowDroid and 
App Info tasks: in the heatmap we show on the y-axis the data fows 
of the application, enhancing the data with information regarding 
the status of the permission needed by the fow source according 
to the following legend: 

A permission already asked in previous version; 
N permission newly asked; 
- the fow does not require any dangerous permission; 

M permission missing; 
R permission revoked (it was requested in the previous version 

and then removed); 
G permission newly asked and automatically granted by An­

droid because there is another permission in the same per­
mission group already asked by the application; 



S special case for when we have multiple permissions to check 
at once (e.g. for a location fow we have to both check the AC-

CESS_FINE_LOCATIONandACCESS_COARSE_LOCATION) 
and we do not fall in any of the previous cases, for example 
because one of the required permissions is revoked and at 
the same time another is added. 

We can see that the READ_PHONE_STATE to INTERNET fow, 
which appears inversion 160229020, has the READ_PHONE_STATE 
permission newly asked (N) in the frst version. However, the per­
mission is revoked (R) in the following version and never added 
back until a few releases later when the fow is no longer present. 
With this information we can understand that, despite fnding the 
data fow with FlowDroid, it can only be exploited in the frst ver­
sion it appeared, as the required permission is no longer requested 
afterwards. This allowed us to discover that FlowDroid reports 
unfeasible fows, since the supposedly leaked data is protected by a 
permission which the application has not requested. 

4 EMPIRICAL STUDY ON ANDROID 
RELEASES 

We used Cartographer to run an empirical study on how Android 
apps change across diferent releases. We considered the following 
research questions: 

• RQ1: How does a new data fow correlate to other changes in 
the release? To answer this question we analyze whether 
the UI layout changes when new fows are introduced. We 
also check the status of the permissions required by the 
fow source to understand if they are missing, appear for 
the frst time together with the new fow, or were already 
requested in a previous version of the app. Finally, we want 
to understand if new fows are accessing new information or 
are leaking already accessed data throughout diferent sinks 
(for example, a new fow appears where data is sent over the 
network, but data from the same source was already being 
written to a fle in the previous release). 

• RQ2: How do web domains relate to layout changes? Similarly 
to what we do for information fows, we want to understand 
if the fact of connecting to new domains is related to some 
changes in the layout, or completely transparent to the user. 

• RQ3: How do information fows evolve during the lifetime of 
an application? How do third party libraries play a role into 
the app evolution? We look for evolution patterns, such as if 
fows tend to be active during the whole analyzed period, or 
if they just last for a few releases only. 

In the following sections we address these research questions and 
try to answer them with the data we extracted with Cartographer. 

4.1 Dataset 
For our empirical study we sampled 235 diferent applications avail­
able in Androzoo [2]. This repository provides unrestricted access 
to over 5.7 millions Android applications along with their metadata, 
allowing straightforward reproducibility of the research. 

Our selection strategy followed two main objectives: 1) collect 
apps with at least 50 releases to have enough data for a study on 
the evolution of the app over time; 2) produce a representative 

Figure 7: App Download Distribution 

distribution of apps. As previous literature showed that Google 
Play Store is a largely trustworthy [1, 21, 30] source of applications, 
we limited our dataset to the apps from this store. 

The fnal dataset contains 14,880 releases, published within the 
timeframe of 21 August 2008 to 14 January 2017. The distribution of 
downloads per application is close to Normal, as shown in Figure 7. 
The majority of apps in our dataset (199) have a star rating of over 
4 out of 5, with 30 applications having a star rating of over 3, and 
just one having a rating of over 2. Finally, the dataset covers all 
the 32 Android categories. It focuses on high quality and popular 
applications. The number of releases per app spans from a lower 
bound of 50 up to 171, with an average value of 63. 

We conclude that the dataset is quite varied and representative. 

Dataset Statistics 

Before discussing the results of our study, we present some statistics 
on our dataset. We found fows in 160 out of the 235 applications 
in our dataset (68%). In total, Cartographer reported 68166 fow 
instances. We defne as fow instance the single path from a source 
to a sink reported by Flowdroid. A fow can comprise multiple fow 
instances. A single app can have multiple instances of the same 
fow over several releases. The following is the list of the 10 most 
popular fows (by number of fow instances): 

NP_INTENT^ NP_FILE : 14628 (21.31%) 

NP_INTENT^ INTERNET: 11023 (16.06%) 

NP_CONTENT_RESOLVER ~» NP_FILE : 9344 (13.61%) 

READ_PHONE_STATE ~» NP_FILE : 5435 (7.92%) 

ACCESS_LOCATION ~~> NP_FILE : 4686 (6.83%) 

NP_CONTENT_RESOLVER ~~> INTERNET: 4583 (6.68%) 

ACCESS_LOCATION ~> INTERNET: 4291 (6.25%) 

NP_PACKAGE_MANAGER ~» NP_FILE : 3423 (4.99%) 

READ_PHONE_STATE ~» INTERNET: 2730 (3.98%) 

NP_PACKAGE_MANAGER ~~> INTERNET: 1847 (2.69%) 

Not all fows are proved to leak sensitive user data. For instance, 
the type of the data determined by the NP_INTENT source depends 
on the intent payload. This information is unavailable since Flow­
droid does not support inter-component communication analysis. 
Similarly, NP_CONTENT_RESOLVER sources may query either ap­
plication specifc data or data which origin has not been recognized. 
All the fows in our study end up in either INTERNET or FILE sinks. 
We assume that fles can be a temporary storage of leaked data, 
which may be sent out at a later point in time. 

For private data disclosure analysis we only consider fows with 
sources that require dangerous permissions. In our study we have 
not detected signifcant number of fows originating in fles with 
identifed names. Therefore, we decided to exclude all fow with 



FILE sink. The following list contains all fows that leak sensitive 
user data: 

ACCESSLOCATION ~~> INTERNET: 4291 (54.67%) 
READPHONESTATE ~~> INTERNET: 2730 (34.78%) 

GET_ACCOUNTS ~~> INTERNET: 805 (10.26%) 
READEXTERNALSTORAGE ~~> INTERNET: 23 (0.29%) 

Unsurprisingly, the most common fows leak the user location 
and the device id number (whose access is granted by the AC-
CESSLOCATION and READPHONESTATE permission, respec­
tively), and send them over the Internet. Device id is often used 
as a unique identifer, and location is often used for geolocation 
services. 

4.2 RQ1: How does a new Data Flow Correlate 
to Other Changes i n the Release? 

We identifed 252 unique fows and discarded 28 of them, as the 
permission required to access the data was not requested by the 
application, making the data inaccessible. Out of the 224 fows left to 
analyze, 56 (25%) originated in libraries, and 168 (75.00%) originated 
in application code. 

Since we are interested in new fows only, we discarded fows 
that were already present in the previous release of the app. Due to 
this flter, we were left with 202 new fows. Out of those, 141 (69.80%) 
were fows leaking data from a new source, while the remaining 61 
(30.20%) leak data from an already leaked source. 

We analyzed 202 fows that we found, and compared the permis­
sions and UI layouts with their state in the version before the fow 
was introduced. We found out that only 30 (14.85%) sources are 
protected by newly asked permissions, whereas 170 (84.15%) new 
fows require a permission that has been already granted previously. 
The remaining 2 belong to the special case described in Section 3.10. 

This means that either leaked data have already been used inside 
the application and started being leaked in a following release, or 
that developers add over-privileged permissions from the start for 
later use. 

The comparison of UI layouts after a new fow has been added 
showed that the layout changed in 167 out of 202 cases (82.67%). 
Conversely, in about one ffth of all cases the addition of a new 
f o w was completely invisible to the user with no visible change 
in UI. This might be a serious privacy threat if the new f o w is 
accessing information protected by a permission which has been 
already granted in a previous release. 

4.3 RQ2: How do Web Domains Relate to 
Layout Changes? 

Similarly to what we did for fows, we analyze the status of the 
layout when there is a connection to a new domain, either identifed 
statically or dynamically. 

For some apps we miss information regarding layout changes 
for some releases, because the layout folder created by the Apk 
Content Analysis is missing. This could happen for example because 
the application interface is entirely in HTML and it is loaded in 
WebView. 

We found out that for the dynamic analysis out of 57183 new 
domain connections, 62.7% of the times (35844) there is a layout 

change, 29.8% (17066) there are no changes, and 7,5% (4273) the 
Apk Content analysis did not generate a layout folder. 

We observed similar results for the 20742 URLs identifed by 
Stringoid, with the proportion more in favor of layout changes: 
16606 (80.1%) layout changed, 4015 (19.3%) layout unchanged and 
121 (0.6%) unknown. 

We checked all the domains with VirusTotal and analyzed the 
ones reported as malicious by at least 3 VirusTotal sources, ending 
up with 16 domains. We manually analyzed these domains checking 
the category reported by VirusTotal’s Forcepoint ThreatSeeker. We 
performed a whois lookup to understand if it would be legit for 
the application to connect to that domain. We report the list of 
elements which could be malicious in Table 1. 

Table 1: Potentially malicious domains 
Domain 

app.wapx.cn 

hotgirls.gikx.gdn 

byprizes.party 

byprizes.party 

90ot.21045.xyz 

dn2.apphale.com 

dnsseed.bitcoin.dashjr.org 

shouji.360tpcdn.com 

Category 

malicious web sites, mobile malware 

malicious web sites 

elevated exposure 

elevated exposure 

elevated exposure 

uncategorized 

suspicious content 

potentially unwanted software 

We further analyzed the applications that connect to the re­
portedly malicious domains. We noticed that Hola Launcher and 
Dolphin Browser have a common subset of malicious domains they 
connect to. We initially hypothesize that the root cause could be a 
shared library, but our analysis found only three libraries in com­
mon: Google Mobile Services, Android Support v4 and Facebook. 
As these three libraries are widely used, and as we did not discover 
malicious behavior in other apps using those libraries, we conclude 
that the connection to such malicious domains is not due to the use 
of suspicious libraries in the app. 

4.4 RQ3: How do Information Flows Evolve 
During the Lifetime of an Application? 

We collected the most common fow patterns (using a 1% frequency 
threshold) in Table 2. We use 1 to report the presence of fows and 
0 for their absence. 

The reported patterns count a total of 802 fows, out of which 
676 (84%) had both a source and a sink inside library code, while 
the remaining 126 (16%) had at least one of them in the app code. 
Count and Frequency columns refer to fows in general, while Lib 
Freq. and Appcode Freq. report the frequency of that pattern in 
library and app code fows, respectively. 

We can see that while third party libraries tend to increase the 
number of fows, the number of fows originating in app code 
remains fairly constant. 

While analyzing the heatmaps generated by Cartographer, we 
came across some interesting fow evolution, which we report and 
comment in the remaining part of this section. The heatmaps we 
present have the same style and features as the one presented in 
Section 3.10, where we combine the information on fows together 
with the permissions required by the application. 



Table 2: Most common fow patterns 
Pattern 

0+ —> 1+ —> 0+ 

0+ —> 1+ 

0+ —> (1 —> 0)+ —> 0+ 

0+ —> (1 —> 0)+ —> 1+ 

(1 —> 0)+ 

1+ 

Count 

314 

168 

107 

80 

60 

12 

Frequency (%) 

39.15 

20.95 

13.35 

9.98 

7.49 

1.50 

Lib Freq. (%) 

36.24 

21.75 

13.16 

11.25 

6.95 

1.78 

Appcode Freq. (%) 

54.76 

16.67 

14.29 

3.17 

10.32 

0.00 
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Figure 8: Yahoo Aviate Launcher Flow 

Figure 8 shows the dangerous fows of the Yahoo Aviate Launcher 
app. There is a strange pattern regarding the location: at some point, 
in version 18829, all fows disappeared. 

Figure 9: Noom Coach Flow 

Figure 9 shows all the dangerous fows of Noom Coach. There 
are many new fows in version 134, all associated to previously 
granted permissions. In version 186 there is a new fow LOCATION 
to INTERNET, and the changes in layout are very small. 

Figure 10: Security Master Flow 

The fows of Security Master app are shown in Figure 10: we 
can see three vertical stripes of fows that, on consecutive releases, 
appear and disappear. Such a strange pattern led us to further 
investigation: we discovered that those versions declare, in groups 
of two, the exact same versionName in the manifest. We suppose 
that in this case we have two applications that were build for various 
Android versions, with diferent libraries and code, but that were 
both fetched by Androzoo. 

In Figure 11 we can see the fows of the PETATTO CALENDAR 
app. There is a fow in the Flurry library that shows how the loca­
tion leaks to an Internet sink. Such fow, however, does not have 
the necessary permission to access the user’s location, since such 
permission was added in version 92, just before the fow disappears 
in the next release. The Flurry library is however not removed, 
which means that either the lib has been updated, or FlowDroid 
cannot identify the fow anymore. 

Figure 11: Data fows of PETATTO CALENDAR 

We encountered 59 fows requiring dangerous permissions that 
originate in libraries: the most common sources for those fows 
are reported in Table 3. This shows that fows in libraries follow 
the same general trend reported in Section 4.1: the most com­
monly leaked sources are related to ACCESS_LOCATION and 
READ_PHONE_STATE permissions. 

Table 3: Most common library f ow sources 
Flow 

ACCESS_LOCATION 

READ_PHONE_STATE 

READ_EXTERNAL_STORAGE 

GET_ACCOUNTS 

Frequency 

63% 

31% 

2% 

2% 

The libraries in which we found more fows are two advertise­
ment and monetization libraries, MoPub (32%) and Inmobi (19%). 
Both libraries only contain fows leaking the user location, and the 
results are confrmed by [9], which reports the two libraries in the 
top 10 of the most installed in the dataset they analyzed. 

4.5 RQ4: How do API Calls Evolve? 
The API evolution analysis is based on the data extracted as ex­
plained in Section 3.7. For this analysis we rely on 228 applications 
analyzed, as for 7 packages we experienced a crash while extracting 
the APIs. 

We found 1047 APIs for which the related permission is requested 
in the same version as the API is added. Excluding APIs found in 
obfuscated code, 797 (64%) APIs are found in library code, and 413 
(36%) in application code. 

For 9360 newly added APIs, the relative permission was already 
requested in a previous version. After removing APIs we found in 
obfuscated classes, 8259 (91%) APIs are added in libraries, and 800 
(11%) in the application code. 

From our data we can see that it is 9 times more frequent to 
have the permission already asked when a new API is added. We 
also found out that most of the newly added APIs (88%) related to 
dangerous permissions are added in libraries. 

5 RELATED WORK 
There are already multiple publications regarding the evolution of 
Android applications. Wei et al. [28] focused on third-party and pre-
installed apps, analyzing the patterns that emerged in the evolution 
of permissions, and reporting a trend of apps becoming overprivi-
leged and requesting more permissions over time. Krutz et al. [17] 
created a dataset of 4416 android releases, enhanced with infor­
mation extracted using diferent static analysis tools. Taylor and 
Martinovic [26] presented a very broad study performed on over 
1,6M applications: they took quarterly snapshots of the Google 



Play Store over a one year period and analyzed the evolution of 
dangerous permissions. With respect to the aforementioned papers, 
our study proposes a wider approach to the evolution of Android 
apps, as we do not focus only on the changes in permissions. 

Ren et al. [24] analyzed the network t rafc generated by 7665 
releases belonging to 512 apps, and identifed several trends such as 
slow https adoption, increase in collecting of personally identifable 
information, and third parties being able to link user location and 
activity across diferent applications. With respect to our work, Ren 
et al. have a more in-depth dynamic analysis focusing on network 
trafc, while they do not consider any static analysis of the app code. 
Moreover, they analyzed roughly half of the releases we considered. 

Calciati and Gorla [10] performed a study on over 14,000 applica­
tions, focusing on the evolution of permission requests. From their 
study it emerged that applications tend to add permissions over 
time, that many newly requested permissions are initially not used 
by the application code, and that when an applications removes a 
permission request it does not necessarily imply the removal of the 
corresponding functionality. 

Hecht at al [16] presented PAPRIKA, a tool based on Soot and its 
Dexpler module to monitors the evolution of mobile apps quality 
based on general object-oriented and Android-specifc anti-patterns. 
They analyzed a dataset of 106 applications with 3,568 releases, but 
were unable to identify general evolution trends. 

Stevens et al. [25] analyzed permission usage and correlated it 
with StackOverfow questions regarding them, reporting that the 
likelihood of misusing a permission decreases with the popularity 
of the permission. 

Zhang et al. [29] examined the applicability of Lehman’s laws of 
software evolution on mobile apps, performing a case study on two 
applications. They focused on three laws, fnding similar trends 
between mobile and desktop apps for two of them, while they could 
not conclude whether the third one holds true. 

Book et al. [9] investigated Android ad libraries’ change in behav­
ior over time by investigating 114,000 apps, extracting ad libraries 
and checking which permissions they try to access, based on the 
APIs they invoke. In their study the authors found out that the 
use of most permissions increased, and that more libraries use 
permissions that can pose privacy and security issues to users. 

Derr et al. [12] conducted a study on libraries’ updatability on 
over 1,2M apps, showing that 85.6% of the libraries could be updated 
without any code modifcation, and that 97.8% of libraries with a 
known security vulnerability could be fxed through a replacement 
of the library with the fxed version. 

6 LIMITATIONS AND THREATS TO VALIDITY 
Cartographer inherits all the limitations from the tools that it in­
cludes in its tool chain. 

The limitations of FlowDroid come from the static analysis it im­
plements: it does not consider paths involving asynchronous calls, 
and it does not trace inter-component fows. We could overcome 
those issues by integrating IC3 [22] into Cartographer. Moreover, 
FlowDroid is not sound, since it does not deal with refection nor 
with native code. 

Obfuscation plays an important role both in library analysis and 
APK content analysis. If the code is obfuscated it is not possible to 

directly compare code and resource names, so the layout analysis 
would report a big change between releases even when changes are 
actually minor. Moreover, if the code is obfuscated and LibRadar 
cannot identify a library, we cannot identify it with our analysis 
either. 

All modules that implement static analyses only focus on Dalvik 
bytecode and ignore native code. This causes again unsoundness. 

Cartographer sufers from limitations due to dynamic analysis 
too. It cannot fully explore applications, as Monkey cannot pro­
duce all the necessary inputs [11]. Cartographer can only observe 
behavior triggered by used events, and misses whatever might be 
triggered by environment factors, for example by timing. 

When we aim to identify libraries using package name heuris­
tics to overcome the limitations of LibRadar, we might incorrectly 
consider some application code as library code. 

Last but not least, we may in general have missed relevant infor­
mation, since sometimes the tools we use might crash on specifc 
APKs. 

7 CONCLUSIONS 
In this paper we presented Cartographer, a ready-to-use framework 
to analyze the evolution of Android applications. Cartographer ex­
tracts and visualizes various information from APKs, and combines 
them to create a report on the evolution of analyzed apps. 

The empirical study we conducted over 14,880 APKs using Car­
tographer allows us to report interesting evolutionary trends: we 
discovered that apps tend to add more data fows over time, even 
if the rate of growth is quite low and most data fows only last for 
a few releases. Another key fnding is that for most of the added 
data fows which have sources protected by dangerous permissions, 
the application had already the permission requested in a previous 
version. We also found out that when developers add APIs that re­
quire a dangerous permission, most of the times the permission was 
already requested in a previous version. This can make it hard for 
users to notice changes in the app behavior, especially because the 
changes that are easier for users to spot are the ones in permissions 
and layout. 

FlowDroid is able to identify data leaks within one component, 
and does not support inter-component communication analysis. In 
the future we plan to include the IC3 tool [22] in our framework 
to supply FlowDroid with the information about inter-component 
links. This would allow us to identify the information passed through 
intents, increasing the precision of Cartographer. 

Finally, it would be benefcial to extend our tool with the analysis 
of the behavior of an application with respect to its description, 
relying on existing work done in the area [15, 20]. 

The code of Cartographer is open source and available at: 

https://github.com/gorla/appmining 
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