
What did Really Change with the new Release of the App?

Paolo Calciati • Konstantin Kuznetsov • Xue Bai • Alessandra Gorla

IMDEA Software Institute, Saarland University, CISPA, Universidad Politécnica Beijing Institute of
Spain Germany de Madrid, Spain Technology, China

ABSTRACT
The mobile app market is evolving at a very fast pace. In order to
stay in the market and fulfll user’s growing demands, developers
have to continuously update their apps either to fx issues or to add
new features. Users and market managers may have a hard time
understanding what really changed in a new release though, and
therefore may not make an informative guess of whether updating
the app is recommendable, or whether it may pose new security
and privacy threats for the user.

We propose a ready-to-use framework to analyze the evolution of
Android apps. Our framework extracts and visualizes various infor
mation —such as how an app uses sensitive data, which third-party
libraries it relies on, which URLs it connects to, etc.— and combines
it to create a comprehensive report on how the app evolved.

Besides, we present the results of an empirical study on 235 appli
cations with at least 50 releases using our framework. Our analysis
reveals that Android apps tend to have more leaks of sensitive data
over time, and that the majority of API calls relative to dangerous
permissions are added to the code in releases posterior to the one
where the corresponding permission was requested.

1 INTRODUCTION
Android has overtaken Microsoft Windows for the first time as the
world’s most popular OS in terms of total Internet usage across
desktop, laptop, tablet and mobile combined1. This growth means
that the Android ecosystem now has numerous, fast evolving, com
petitive markets. To remain appealing for users and avoid them
migrating to alternative apps, developers have to continuously up
date their apps to provide new features and address bug fixes as fast
as possible. Frequently updated apps also have better visibility on
the mobile stores. This fact, along with the high competitiveness of
the market, ensures that popular Android apps are released on a
monthly or even weekly basis.

1 http://gs.statcounter.com/press/android-overtakes-windows-for-frst-time

While frequent release cycles are beneficial to be ahead of the
curve, they also cause problems for market managers and final users.
Market managers, such as Google for its Google Play Store, need to
analyze every single version before approving it for publishing to
the store. Final users, on the other hand, receive updates for the apps
installed on their devices transparently, as by default the Android
system notifies them only when there are substantial changes in the
list of permissions that the app requests. Informed users, however,
cannot easily understand how the behavior of an app changed with
an app release, as most of the changes happen beyond the user
interface and the list of requested permissions, which is what users
can easily analyze.

An app which already has access to the Internet may suddenly
start establishing connections with suspicious hosts after a new
release. If the app processes some sensitive data, such as the user’s
contact list, it could suddenly start sending this information to a
third party server. Without a proper understanding of what changed
in the new version of an app, it is hard to take an informative guess
of whether an update is beneficial or harmful to the user’s security
and privacy.

This paper presents Cartographer, a ready-to-use framework for
users and market managers to analyze the evolution of an Android
application. Cartographer extracts and visualizes various infor
mation: 1) it shows how an app uses sensitive data, thanks to a
customized static data flow analysis; 2) it aims to identify the list of
third-party libraries that the app uses, even if obfuscated; 3) it ex
tracts the network traffic to have a list of hosts the application talks
to; 4) it statically extracts sensitive Android APIs the application
uses. Cartographer runs these analyses separately and combines the
results to create a comprehensive report on how the app evolved.

This is not the first paper that aims to analyze how Android
apps evolve in their behavior. While many of the existing litera
ture regarding Android application evolution focus on dangerous
permissions [10, 26, 28], in this paper we take a wider approach to
have a more in-depth understanding of what changes between dif
ferent releases. We use Cartographer to empirically analyze 14,880
releases. Our dataset comprises 235 applications with at least 50
releases.

Our analysis reveals that Android applications tend to have more
leaks of sensitive data over time, in line with what Ren et al. re
ports [24]. Though, the growth is largely determined by third-party
libraries. Our study also shows that the majority of API calls relative
to dangerous permissions are added to the code in releases posterior
to the one where the corresponding permission was requested, and
that the vast majority of data fows only exists for a limited number
of versions.

The remainder of the paper is structured as follows:

• Section 2 presents the information that defnes the domain
of Android applications and their versioning.

• Section 3 presents our tool and explains its workfow.
• Section 4 reports our fnding, characterizing the evolution

of data fows we encountered in our dataset.
• Section 5 presents the related work.
• Section 6 contains limitations and threats to validity.
• Finally, Section 7 summarizes our fndings.

2 THE ANDROID ECOSYSTEM
Android developers can distribute their apps through markets such
as the Google Play Store. It allows users to easily access new app
releases, as they can be downloaded by default on any mobile device.

Diferent Android releases of the same app can be distinguished
thanks to two identifers. The versionCode is an automatically
generated integer used for internal versioning. This number can de
termine whether one release is more recent than another. A greater
value of the versionCode indicates that the release is successive to
any other with a lower value. This number does not necessarily
have a strong resemblance to the app release version that is visi
ble to the user. The second identifer is versionName string. Most
developers defne versionNames in the format major.minor, but
such convention is not enforced. Moreover, versionNames are not
necessarily unique across releases. This value has no purpose other
than to be displayed to users.

Google Play allows developers to publish multiple APKs for the
same release to support devices with diferent requirements such
as screen sizes and CPU architectures 2: those APKs share the same
versionName.

Each application comes with a manifest fle, which contains
essential information about the app: the Java package name that
uniquely identifes the app; the list of Android components that the
app ofers— activities, services, broadcast receivers, and content
providers; the list of permissions that the app requests to access
protected parts of the API and interact with other applications;
the minimum Android framework release required; and the list of
native libraries that the app must be linked to.

Beside the manifest fle, the APK contains all the binary code
fles of the app and resources. The content of an APK is divided
into separate folders. Resources have their own folder. The draw-
able folder contains graphics to be shown on the screen, including
bitmaps, shapes, and animations. The layout folder contains XML
fles that specify the user interface layouts. A layout defnes the
visual structure for a user interface, such as the UI for a screen or
app widget.

As of Android 6.0, its security model is based on a runtime per
mission mechanism. The two most important protection levels are
normal and dangerous permissions. The frst o nes p rotect func
tionalities that pose very little risk to the user’s privacy. If an app
requests a normal permission, the system automatically grants
it. Dangerous permissions protect data or resources that involve
user’s private information. The user has to explicitly grant these
permissions to the app when requested. With the new permission
model that Android introduced with API level 23, however, apps
requesting a dangerous permission would have it automatically
granted if the user already approved another permission from the
same group.

3 ANALYZING THE EVOLUTION OF AN APP
There are many features that one might look at in order to under
stand how the behavior changed with a new release of the app. At
a very high level, one may look at the list of requested permissions
and assume that no major change occurs in the functionality of the
app unless this list changes. Still, many subtle things can happen
without any change in the list of permissions. For instance, an app
that already had access to sensitive data, such as the contact list,
may suddenly send this information to a third party server.

Calciati et al. [10] showed that the vast majority of apps do not
change their permission list across many releases. As a consequence,
to properly understand the behavior of a specifc release we have
to resort to more comprehensive analyses.

Our framework aims to thoroughly analyze the behavior of an
app keeping into account several aspects, each of them requiring a
specifc feature: we analyze the network t rafc to have an under
standing of which hosts the app talks to; we analyze how sensitive
data fows across the application, and most importantly if there
is any leak through the Internet; we analyze the evolution of API
calls relative to dangerous permissions to discover how developers
access sensitive information during the app’s lifecycle. We then
visualize the output of each analysis to make it easy for the users
to spot any signifcant diference.

Figure 1 shows the workfow of Cartographer and its main com
ponents. The workfow is divided into three logical parts. The frst
one aims to retrieve a signifcant amount of releases for the app of
interest. The second one is to analyze each APK in isolation using
diferent analyses. The third and the last one aggregates data and
visualizes them for the user.

Each module in the information extraction workfow is imple
mented within the Calappa toolchain [5] on top of Luigi3. Luigi is
a Python library that helps developers build complex pipelines of
batch jobs. Each module can be executed separately, though, they
are dependent on each other. To exchange information, modules
produce JSON fles. To achieve scalability, there is an ssh adapter
that allows to execute tasks on several machines.

Cartographer visualizes relevant information in the form of a
heatmap. As a general pattern, for each analysis, the heatmap shows
on the x-axis the release version numbers and on the y-axis the
features extracted from the corresponding analysis. We also comple
ment these data with the location where the feature was found—in
case of a third-party library we append its name separated by a

2 https://developer.android.com/google/play/publishing/multiple-apks.html 3https://github.com/spotify/luigi

Downloading Filtering
App Market or

Database

Metadata

Data Flows

Libraries

APIs

APK Content

URLs

Analysis

Figure 1: Main components and analysis f ow of Cartogra
pher

colon. Columns can be highlighted with a colored fag: red if the
version name of that release is the same as the previous one, dark
green if the version name has a major change, and light green for
minor updates, thus helping to understand whether changes are
related to the release cycle.

We now proceed to describe each analysis that Cartographer
employs and its corresponding module.

3.1 App Releases Retrieval
To understand how the behavior of an app changed, it is frst of
all necessary to retrieve as many previous releases as possible.
Cartographer supports diferent kinds of Android app sources. It
requires the package name of an app or a list of packages. We
implemented adapters for Androzoo [2] and for the F-Droid app
store 4 to pre-flter and download app releases that satisfy certain
fltering conditions. After the downloading process is complete,
Cartographer creates an index list of APKs, which is fed as input to
the Luigi modules to start the analyses.

3.2 Application Metadata
As described in Section 2, APK fles contain essential information
about the app stored in the Android manifest fle. We extract basic
information that is fed to other modules to enrich their analysis.

We use the Android Asset Packaging Tool (aapt) 5 to extract the
following data:

• package name
• version code
• version name
• platform build version name
• available activities
• Android API level
• requested dangerous permissions

First, we verify that package name and version code are con
sistent with what the APK fle name states and report possible
mismatches. Next, we heuristically identify the release type, look
ing at the version name. Usually, this release is a string in the format
<major>.<minor>.<point>. A change in the frst part of the version

4https://f-droid.org
5developer.android.com/guide/topics/manifest/uses-feature-element.html

name may indicate a major release update, which is expected to
have substantial diferences. A change in the second part may iden
tify a release with small changes introduced, while a change in the
last part should imply just minor changes and some bug fxes.

Google Play allows to publish diferent APKs each targeting
diferent Android devices: these releases will have the same version
name. If Cartographer fnds two consecutive versions with the same
version name it marks them with a red fag on the heatmap, because
diferences in these releases could, and should, be due to diferent
architectures and not to radical changes in the app’s evolution.

We rely on Androguard 6 to extract the list of overprivileged
permissions. We defne them as permissions that are declared in
the AndroidManifest.xml fle, but for which we could not fnd any
corresponding API use in the application code.

Finally, we use the APK Parse library 7 to extract all the activities
listed in the Android Manifest, which we later use to compute the
activity coverage of dynamic analysis.

The output of this module is a JSON fle for each application
package, containing all the aforementioned information for all the
relative APKs in our dataset.

3.3 Library Analysis
Android developers resort to third-party libraries to provide many
ready-to-use functionalities and services. They may also include
third-party libraries that show ads only to get some revenue. When
analyzing the behavior on an app, it is important to distinguish
whether it comes from the core of the app (i.e. the code that the
app developer wrote) or from a third-party library, and thus even
developers may not be fully aware of it.

The binary code, comprising an app and libraries, comes as a
single package, and thus the identifcation of libraries in Android is
not straightforward, especially when code is obfuscated, as proven
by many studies performed on the subject [6, 18, 19]. In order
to detect third-party libraries used in Android apps, we resort to
LibRadar [19]. It detects libraries based on stable API features, which
are obfuscation resilient. As LibRadar relies on known patterns to
identify libraries, it can only recognize the ones already presented
in its model.

Using our own heuristic we complement the information ex
tracted by LibRadar to increase the number of identifed libraries.
We frst use Soot [27] to collect the package names from the full
names of classes inside an APK. For each package name we extract
the prefx by removing package components until either the length
of the prefx is less than 8 characters or there are only two compo
nents remaining. For example, ak.alizandro.smartaudiobookplayer
would be reduced to ak.alizandro. We fnally remove all the package
names whose prefx matches the application package name prefx
and identify the remaining packages as libraries. In this respect, we
assume that developers keep the same package prefx across apps
when reusing code.

We also truncate packages that contain obfuscated sufxes (e.g.
com.paypal.a.b to com.paypal), and map completely obfuscated
packages (e.g. com.b.d or a.b.c) to the specifc OBFUSCATED tag.

6 https://github.com/androguard/androguard
7 https://github.com/tdoly/apk_parse

To improve readability we manually created a mapping of known
package names to the corresponding libraries (such as com.paypal
to Paypal). We leave the package name as is for less known libraries.
This simple heuristic does not work for obfuscated packages but
still allows to noticeably enhance LibRadar’s results.

For each application, we produce a heatmap containing on the
y-axis the libraries that the app includes, highlighting which ones
are detected by LibRadar (dark blue cells), and which ones are added
by us (light blue cells). Figure 2 is an example of such heatmap for
the Smart Audiobook Player app. Some obfuscated libraries, as well
as the Android Support v4 library are used by the app throughout
the whole examined lifecycle. During the app’s lifecycle developers
started adding more libraries, such as the Unseen BASS library,
which provides sample, stream, and recording functions.

Figure 2: Libraries included in Smart Audiobook Player

3.4 Apk Content Analysis
Cartographer extracts the resources contained in the APKs, aiming
to understand if there are major changes with respect to previous
releases. The focus is mostly on the UI, which is the principal chan
nel through which the user perceives changes in the application.
We resort to Apktool 8 to extract resource fles, contained in the
res folder, including strings, drawable resources, and application
layout fles. In this step we also extract the application code fles,
contained in the smali folder.

We use this information to show which changes happened be
tween releases at the code and layout levels, generating heatmaps
as output. We compare two releases by analyzing the content of
each fle present in both packages. If a fle is available in only one
of the two APKs, we assume that it was either added or removed.

The resource analysis module outputs two heatmaps: the frst one
shows relevant information extracted from the Android manifest
(i.e. how many activities, permissions, providers, receivers and
services have been added, removed or changed with respect to the
previous version). The second one, shown in Figure 3, reports the
changes in code and UI elements between consecutive releases of
the app.

The heatmap can be read as follows:

• the frst two rows show how many UI elements are added
or removed. This measure tracks changes visible to the user,
such as adding or removing a button from an Activity.

• the next three rows (layouts added, removed and changed)
show the percentage of layout fles that have been added,

8https://ibotpeaches.github.io/Apktool/

Figure 3: Apk Structure of Mobile Print - PrinterShare

removed or changed, giving a rough idea of how much the
layout has been changed from the previous version.

• the following three lines (layout modifcation, insertion and
deletion) report the percentage of lines in the layout fles
that have been added, removed or modifed.

• the drawable and values rows show the percentage of fles
changed, added and deleted in the drawable and values di
rectories, which are found inside the res folder and contain
application’s images for diferent screen sizes and localized
strings.

• fnally, the smali row shows the percentage of the code that
has been added, deleted or modifed (fle based).

The heatmap cells show the percentage of changes with respect
to the previous release. We can see from this heatmap that some
versions, such as 122 and 123, have no changes in the layout at
all, while in versions 131 and 138 developers heavily modifed the
layout. Unfortunately, this comparison is not applicable in case of
obfuscation.

3.5 Dynamic Analysis of Network Tra fc
With this module we want to monitor the network trafc generated
by the application to discover potential security and privacy threats.
The dynamic analysis uses Monkey, an automated event generator
created by Android developers, to generate pseudo-random streams
of user events. Despite the high number of tools available for auto
matically exercising the application, Monkey was proved to be one
of the most efective [11]. We use Monkey to execute each APK,
with three runs of 5 minutes each, while logging the data produced
by the tcpdump command.

We use the Bro Network Security Monitor 9 to extract the do
mains to which each APK connects and then analyze each of them
on VirusTotal 10 to verify if they are malicious or not. We consider
a domain as potentially malicious if it is reported as such by at least
three VirusTotal detection engines.

For each application we also compute the percentage of activities
covered, extracting all visited activities with the logcat command

9https://www.bro.org/
10https://www.virustotal.com

on the emulator and comparing them to the total number of activi
ties extracted by the module that analyzes the manifest fle. With
our approach we covered, on average, about 20% of the activities.

Figure 4: Saycupid Domains Heatmap

Figure 4 shows the output of the dynamic analysis for the Saycu-
pid application: in the heatmap we highlight in blue which releases
connect to which domains. From this example we can see that, from
version 355 on, the application starts connecting to some third party
analytics services (crashlitics.com and app-measurement.com).

3.6 Static Analysis of Network T ra fc with
String Analysis

As dynamic analysis might miss relevant parts of the code, we
also implement a module that inspects the bytecode for network
activity. This module relies on Stringoid [23], a static analysis tool
that takes as input an APK and produces a set of string patterns
representing URLs. We use it to extract constructed URL strings
from applications, estimating the domains the app connects to.

For each extracted URL, we use the data obtained by Apktool
and LibRadar to understand if it is used in the main application
code or in a library, and in the latter case we identify in which
one. The output of the Stringoid task is a heatmap which shows,
for each version, which URLs have been found in the code, and
their corresponding location. The ones found in library code have
cells colored in light blue, while URLs found in application code
are represented by dark blue cells.

Figure 5: Stringoid Heatmap example

Figure 5 shows the heatmap for the VLC Direct app: we can see
that starting from version 92 the app includes new URLs related
to the Google Mobile Services library. By checking the output of
the libraries module we see in fact that release 92 adds the Google
Mobile Services library to its code base.

3.7 API Evolution
Permissions are an abstract representation of the behavior of an app
that users easily understand. However, many diferent operations
are protected by the same permission, and the consideration of just
permissions would miss relevant details. We thus extract the list of
API calls that the app makes to the Android framework.

For this task we use Soot. The frst step is to separate Android
APIs from other method invocations and only keep the ones re
lated to dangerous permissions. The process we used to create the
list of APIs relative to each dangerous permission is explained in
Section 3.8.

For each newly added API that requires a dangerous permission,
whether it appears in the application code or in any third-party
library, we save the API, the list of available permissions, and the
list of locations in which the API is used. We then parse the obtained
APIs and extract the ones for which the required permission was
already granted in a previous version.

3.8 Dangerous Permission API Mapping
Since in our analysis we focus on permissions that could potentially
afect the user’s privacy, we want to consider only the APIs that
require a dangerous permission. This task is not straightforward,
as Google never released an ofcial mapping between API calls and
permissions, and the list might change with every Android major
update. Given that a comprehensive mapping of API-permission
does not exist, many researchers concentrated their eforts on gen
erating one [4, 7, 8, 13].

To create our permission mapping we started from the one
present in Androguard, which contains over 11,000 APIs. This in
formation comes from the PScout’s automatically generated map
pings [4]. It is used by the tool to identify which permissions are
actually needed by the application’s code. We manually parsed all
the entries in the mapping, leaving only the ones that we were sure
would actually require at least one permission, only leaving slightly
more than 2000 APIs. We proceeded to parse all the mappings
presented in DPerm [8], and added them to our set.

After that, for each permission, we manually searched the web
for how to implement basic functionalities using that permission
(e.g. when analyzing the SEND_SMS permission we looked for how
to send an sms). We added all mentioned APIs (such as the send-
TextMessage method from the android.telephony.SmsManager
class), and fnally manually checked for other APIs in the same
classes in the ofcial Android developers website (sendDataMessage,
sendMultimediaMessage and sendMultipartTextMessage methods
from the android.telephony.SmsManager class). The last step
was to inspect the source code of Android 6.0, and check all per
mission annotations and comments mentioning a permission. Our
fnal mapping contains 2383 APIs.

3.9 Data Leak Analysis
Android apps usually access private user data like the list of contacts
or current location. It is not clear whether the app leaks such sensi
tive information. To identify data leaks we resort to Flowdroid, the
state of the art tool for static information fow analysis of Android
apps [3].

The default set of sources (i.e. what sensitive data should be
tracked) and sinks (i.e. program locations where a leak might hap
pen) supplied with Flowdroid is very limited and does not include
all APIs protected by dangerous permissions, signifcantly restrict
ing the fows detectable by Flowdroid. In Cartographer we extend
the given list of sources with APIs accessing sensitive information.
Regarding sinks, we only consider APIs that send data to the Inter
net or store it to the fle system, which can be a temporary storage
enabling data leaks at later points in time.

Starting with the most comprehensive list of sensitive sources
and sinks as provided by Droidsafe [14] (8,500 sources, 3,700 sinks),
we gradually remove unrelated APIs, such as ones from the follow
ing categories: UNMODELED, NFC, SYNCHRONIZATION_DATA,
DATABASEINFORMATION, BLUETOOTHINFORMATION, GUI.

Afterwards, we ensure that our fnal selection includes all rele
vant dangerous APIs introduced in Section 3.8.

Flowdroid produces data fows in the form:

sourcemethod0 -> sinkmethod1

where source and sink are Android API methods; method0 and
method1 are API call site locations. We leverage the API-permission
mapping defned in Section 3.8 and library analysis from Section 3.3
to characterize these fows. We translate them to

PERMISSIONinr ^ SI NKinr

pairs, where loc can be either ‘in-app code’ or a particular library
name.

Most of the data in the Android system can be accessed via a
dedicated component, the Content Provider, which provides APIs
to query, insert, and update data. The data accessed is specifed by
providing a special URI string when invoking the Content Resolver
at runtime: for example, access to contacts in address book is done
by passing the ContactsContract.Contacts.CONTENT_URI string
as method argument. To know which data is being accessed, we
need to get the value of the URI parameter.

In order to map ContentResolver data types, we need to create a
list of all possible URIs used in the Android platform, which require
a dangerous permission. We obtain it by manually parsing all the
classes in the android.provider package from the ofcial Android
documentation 1 1 . As a result, we substitute content resolver API
sources with two types of URI values. The frst one is represented by
constant strings starting with the “content://” prefx. The other one
is a Uri object which name contains the “CONTENT_URI” string.
Thus, we use these values as new data sources and only consider
the data fows that contain content resolver APIs.

Flowdroid is unable to report the actual URLs and fle paths
of sinks; thus, we extend it to capture this information. As these
values are usually passed—sometimes incompletely—into helper
methods for further assembly, we resort to inter-procedural analysis
to extract the precise sink destinations.

We tackle this problem with data fow analysis. APIs that create
network connections or write to fles are considered to be sinks.
Conversely, all constant strings matching URL or fle path patterns

are treated as data sources. The resulting data fows URLfiow link
URLs to openConnection methods (and fle paths to write invo
cations) in a context-sensitive manner. For each data fow path

11https://developer.android.com/reference/android/provider/package- summary.html

we search for URLfiow with the longest common path s u f x . For
instance, the fows:

sourcemethod0 -> node1metkod1 ^node2^^^sink^^od

URLflow: urlmethod4^node3mth^

are transformed into: /

sourcemethod0 ^ sinkmethod3 -> sink+urlmethod3<-'

Static analysis is not able to identify all URLs and fle names, as
some of them are resolved only at runtime.

As Flowdroid performs static analysis, it might produce over-
approximated results: some fows may be infeasible in practice. One
example are fows whose sources require a permission which is not
requested by the application.

In our analysis we distinguish two type of fows: the most inter
esting ones are the fows that access user sensitive data, which are
protected by a dangerous permission, such as the list of contacts.
The second type of fows contains all fows that access information
which is either not protected by a dangerous permission, such as
network settings, or fows that have a source for which we can
not derive the proper permission, such as unrecognized content
resolver APIs. When we analyze fows of this latter type, we prefx
them with the tag NP (non-dangerous permission).

3.10 Data Analys is

In the Data Analysis step we combine information from all the
previous modules to provide a more in-depth analysis. For instance,
we check whether the application layout changes when a new fow
appears.

Figure 6: TripAdvisor Flow

One example of combining results from diferent scripts is Fig
ure 6, where we combine data gathered from the FlowDroid and
App Info tasks: in the heatmap we show on the y-axis the data fows
of the application, enhancing the data with information regarding
the status of the permission needed by the fow source according
to the following legend:

A permission already asked in previous version;
N permission newly asked;
- the fow does not require any dangerous permission;

M permission missing;
R permission revoked (it was requested in the previous version

and then removed);
G permission newly asked and automatically granted by An

droid because there is another permission in the same per
mission group already asked by the application;

S special case for when we have multiple permissions to check
at once (e.g. for a location fow we have to both check the AC-

CESS_FINE_LOCATIONandACCESS_COARSE_LOCATION)
and we do not fall in any of the previous cases, for example
because one of the required permissions is revoked and at
the same time another is added.

We can see that the READ_PHONE_STATE to INTERNET fow,
which appears inversion 160229020, has the READ_PHONE_STATE
permission newly asked (N) in the frst version. However, the per
mission is revoked (R) in the following version and never added
back until a few releases later when the fow is no longer present.
With this information we can understand that, despite fnding the
data fow with FlowDroid, it can only be exploited in the frst ver
sion it appeared, as the required permission is no longer requested
afterwards. This allowed us to discover that FlowDroid reports
unfeasible fows, since the supposedly leaked data is protected by a
permission which the application has not requested.

4 EMPIRICAL STUDY ON ANDROID
RELEASES

We used Cartographer to run an empirical study on how Android
apps change across diferent releases. We considered the following
research questions:

• RQ1: How does a new data fow correlate to other changes in
the release? To answer this question we analyze whether
the UI layout changes when new fows are introduced. We
also check the status of the permissions required by the
fow source to understand if they are missing, appear for
the frst time together with the new fow, or were already
requested in a previous version of the app. Finally, we want
to understand if new fows are accessing new information or
are leaking already accessed data throughout diferent sinks
(for example, a new fow appears where data is sent over the
network, but data from the same source was already being
written to a fle in the previous release).

• RQ2: How do web domains relate to layout changes? Similarly
to what we do for information fows, we want to understand
if the fact of connecting to new domains is related to some
changes in the layout, or completely transparent to the user.

• RQ3: How do information fows evolve during the lifetime of
an application? How do third party libraries play a role into
the app evolution? We look for evolution patterns, such as if
fows tend to be active during the whole analyzed period, or
if they just last for a few releases only.

In the following sections we address these research questions and
try to answer them with the data we extracted with Cartographer.

4.1 Dataset
For our empirical study we sampled 235 diferent applications avail
able in Androzoo [2]. This repository provides unrestricted access
to over 5.7 millions Android applications along with their metadata,
allowing straightforward reproducibility of the research.

Our selection strategy followed two main objectives: 1) collect
apps with at least 50 releases to have enough data for a study on
the evolution of the app over time; 2) produce a representative

Figure 7: App Download Distribution

distribution of apps. As previous literature showed that Google
Play Store is a largely trustworthy [1, 21, 30] source of applications,
we limited our dataset to the apps from this store.

The fnal dataset contains 14,880 releases, published within the
timeframe of 21 August 2008 to 14 January 2017. The distribution of
downloads per application is close to Normal, as shown in Figure 7.
The majority of apps in our dataset (199) have a star rating of over
4 out of 5, with 30 applications having a star rating of over 3, and
just one having a rating of over 2. Finally, the dataset covers all
the 32 Android categories. It focuses on high quality and popular
applications. The number of releases per app spans from a lower
bound of 50 up to 171, with an average value of 63.

We conclude that the dataset is quite varied and representative.

Dataset Statistics

Before discussing the results of our study, we present some statistics
on our dataset. We found fows in 160 out of the 235 applications
in our dataset (68%). In total, Cartographer reported 68166 fow
instances. We defne as fow instance the single path from a source
to a sink reported by Flowdroid. A fow can comprise multiple fow
instances. A single app can have multiple instances of the same
fow over several releases. The following is the list of the 10 most
popular fows (by number of fow instances):

NP_INTENT^ NP_FILE : 14628 (21.31%)

NP_INTENT^ INTERNET: 11023 (16.06%)

NP_CONTENT_RESOLVER ~» NP_FILE : 9344 (13.61%)

READ_PHONE_STATE ~» NP_FILE : 5435 (7.92%)

ACCESS_LOCATION ~~> NP_FILE : 4686 (6.83%)

NP_CONTENT_RESOLVER ~~> INTERNET: 4583 (6.68%)

ACCESS_LOCATION ~> INTERNET: 4291 (6.25%)

NP_PACKAGE_MANAGER ~» NP_FILE : 3423 (4.99%)

READ_PHONE_STATE ~» INTERNET: 2730 (3.98%)

NP_PACKAGE_MANAGER ~~> INTERNET: 1847 (2.69%)

Not all fows are proved to leak sensitive user data. For instance,
the type of the data determined by the NP_INTENT source depends
on the intent payload. This information is unavailable since Flow
droid does not support inter-component communication analysis.
Similarly, NP_CONTENT_RESOLVER sources may query either ap
plication specifc data or data which origin has not been recognized.
All the fows in our study end up in either INTERNET or FILE sinks.
We assume that fles can be a temporary storage of leaked data,
which may be sent out at a later point in time.

For private data disclosure analysis we only consider fows with
sources that require dangerous permissions. In our study we have
not detected signifcant number of fows originating in fles with
identifed names. Therefore, we decided to exclude all fow with

FILE sink. The following list contains all fows that leak sensitive
user data:

ACCESSLOCATION ~~> INTERNET: 4291 (54.67%)
READPHONESTATE ~~> INTERNET: 2730 (34.78%)

GET_ACCOUNTS ~~> INTERNET: 805 (10.26%)
READEXTERNALSTORAGE ~~> INTERNET: 23 (0.29%)

Unsurprisingly, the most common fows leak the user location
and the device id number (whose access is granted by the AC-
CESSLOCATION and READPHONESTATE permission, respec
tively), and send them over the Internet. Device id is often used
as a unique identifer, and location is often used for geolocation
services.

4.2 RQ1: How does a new Data Flow Correlate
to Other Changes i n the Release?

We identifed 252 unique fows and discarded 28 of them, as the
permission required to access the data was not requested by the
application, making the data inaccessible. Out of the 224 fows left to
analyze, 56 (25%) originated in libraries, and 168 (75.00%) originated
in application code.

Since we are interested in new fows only, we discarded fows
that were already present in the previous release of the app. Due to
this flter, we were left with 202 new fows. Out of those, 141 (69.80%)
were fows leaking data from a new source, while the remaining 61
(30.20%) leak data from an already leaked source.

We analyzed 202 fows that we found, and compared the permis
sions and UI layouts with their state in the version before the fow
was introduced. We found out that only 30 (14.85%) sources are
protected by newly asked permissions, whereas 170 (84.15%) new
fows require a permission that has been already granted previously.
The remaining 2 belong to the special case described in Section 3.10.

This means that either leaked data have already been used inside
the application and started being leaked in a following release, or
that developers add over-privileged permissions from the start for
later use.

The comparison of UI layouts after a new fow has been added
showed that the layout changed in 167 out of 202 cases (82.67%).
Conversely, in about one ffth of all cases the addition of a new
f o w was completely invisible to the user with no visible change
in UI. This might be a serious privacy threat if the new f o w is
accessing information protected by a permission which has been
already granted in a previous release.

4.3 RQ2: How do Web Domains Relate to
Layout Changes?

Similarly to what we did for fows, we analyze the status of the
layout when there is a connection to a new domain, either identifed
statically or dynamically.

For some apps we miss information regarding layout changes
for some releases, because the layout folder created by the Apk
Content Analysis is missing. This could happen for example because
the application interface is entirely in HTML and it is loaded in
WebView.

We found out that for the dynamic analysis out of 57183 new
domain connections, 62.7% of the times (35844) there is a layout

change, 29.8% (17066) there are no changes, and 7,5% (4273) the
Apk Content analysis did not generate a layout folder.

We observed similar results for the 20742 URLs identifed by
Stringoid, with the proportion more in favor of layout changes:
16606 (80.1%) layout changed, 4015 (19.3%) layout unchanged and
121 (0.6%) unknown.

We checked all the domains with VirusTotal and analyzed the
ones reported as malicious by at least 3 VirusTotal sources, ending
up with 16 domains. We manually analyzed these domains checking
the category reported by VirusTotal’s Forcepoint ThreatSeeker. We
performed a whois lookup to understand if it would be legit for
the application to connect to that domain. We report the list of
elements which could be malicious in Table 1.

Table 1: Potentially malicious domains
Domain

app.wapx.cn

hotgirls.gikx.gdn

byprizes.party

byprizes.party

90ot.21045.xyz

dn2.apphale.com

dnsseed.bitcoin.dashjr.org

shouji.360tpcdn.com

Category

malicious web sites, mobile malware

malicious web sites

elevated exposure

elevated exposure

elevated exposure

uncategorized

suspicious content

potentially unwanted software

We further analyzed the applications that connect to the re
portedly malicious domains. We noticed that Hola Launcher and
Dolphin Browser have a common subset of malicious domains they
connect to. We initially hypothesize that the root cause could be a
shared library, but our analysis found only three libraries in com
mon: Google Mobile Services, Android Support v4 and Facebook.
As these three libraries are widely used, and as we did not discover
malicious behavior in other apps using those libraries, we conclude
that the connection to such malicious domains is not due to the use
of suspicious libraries in the app.

4.4 RQ3: How do Information Flows Evolve
During the Lifetime of an Application?

We collected the most common fow patterns (using a 1% frequency
threshold) in Table 2. We use 1 to report the presence of fows and
0 for their absence.

The reported patterns count a total of 802 fows, out of which
676 (84%) had both a source and a sink inside library code, while
the remaining 126 (16%) had at least one of them in the app code.
Count and Frequency columns refer to fows in general, while Lib
Freq. and Appcode Freq. report the frequency of that pattern in
library and app code fows, respectively.

We can see that while third party libraries tend to increase the
number of fows, the number of fows originating in app code
remains fairly constant.

While analyzing the heatmaps generated by Cartographer, we
came across some interesting fow evolution, which we report and
comment in the remaining part of this section. The heatmaps we
present have the same style and features as the one presented in
Section 3.10, where we combine the information on fows together
with the permissions required by the application.

Table 2: Most common fow patterns
Pattern

0+ —> 1+ —> 0+

0+ —> 1+

0+ —> (1 —> 0)+ —> 0+

0+ —> (1 —> 0)+ —> 1+

(1 —> 0)+

1+

Count

314

168

107

80

60

12

Frequency (%)

39.15

20.95

13.35

9.98

7.49

1.50

Lib Freq. (%)

36.24

21.75

13.16

11.25

6.95

1.78

Appcode Freq. (%)

54.76

16.67

14.29

3.17

10.32

0.00

ACCESSJ.OCATION - INTERNET[

6ET_ACCOUNTS - AUTHENTICATE_ACCOUNTS

GET_ACCOUNTS - INTERNET

GET_ACCOUNTS- INTERNET:Volley HTTP library

GET_ACCOUNTS-NP_FILE

READ PHONE STATE - INTERNETmlib

,..iii„i:is:
s s s : s s

Figure 8: Yahoo Aviate Launcher Flow

Figure 8 shows the dangerous fows of the Yahoo Aviate Launcher
app. There is a strange pattern regarding the location: at some point,
in version 18829, all fows disappeared.

Figure 9: Noom Coach Flow

Figure 9 shows all the dangerous fows of Noom Coach. There
are many new fows in version 134, all associated to previously
granted permissions. In version 186 there is a new fow LOCATION
to INTERNET, and the changes in layout are very small.

Figure 10: Security Master Flow

The fows of Security Master app are shown in Figure 10: we
can see three vertical stripes of fows that, on consecutive releases,
appear and disappear. Such a strange pattern led us to further
investigation: we discovered that those versions declare, in groups
of two, the exact same versionName in the manifest. We suppose
that in this case we have two applications that were build for various
Android versions, with diferent libraries and code, but that were
both fetched by Androzoo.

In Figure 11 we can see the fows of the PETATTO CALENDAR
app. There is a fow in the Flurry library that shows how the loca
tion leaks to an Internet sink. Such fow, however, does not have
the necessary permission to access the user’s location, since such
permission was added in version 92, just before the fow disappears
in the next release. The Flurry library is however not removed,
which means that either the lib has been updated, or FlowDroid
cannot identify the fow anymore.

Figure 11: Data fows of PETATTO CALENDAR

We encountered 59 fows requiring dangerous permissions that
originate in libraries: the most common sources for those fows
are reported in Table 3. This shows that fows in libraries follow
the same general trend reported in Section 4.1: the most com
monly leaked sources are related to ACCESS_LOCATION and
READ_PHONE_STATE permissions.

Table 3: Most common library f ow sources
Flow

ACCESS_LOCATION

READ_PHONE_STATE

READ_EXTERNAL_STORAGE

GET_ACCOUNTS

Frequency

63%

31%

2%

2%

The libraries in which we found more fows are two advertise
ment and monetization libraries, MoPub (32%) and Inmobi (19%).
Both libraries only contain fows leaking the user location, and the
results are confrmed by [9], which reports the two libraries in the
top 10 of the most installed in the dataset they analyzed.

4.5 RQ4: How do API Calls Evolve?
The API evolution analysis is based on the data extracted as ex
plained in Section 3.7. For this analysis we rely on 228 applications
analyzed, as for 7 packages we experienced a crash while extracting
the APIs.

We found 1047 APIs for which the related permission is requested
in the same version as the API is added. Excluding APIs found in
obfuscated code, 797 (64%) APIs are found in library code, and 413
(36%) in application code.

For 9360 newly added APIs, the relative permission was already
requested in a previous version. After removing APIs we found in
obfuscated classes, 8259 (91%) APIs are added in libraries, and 800
(11%) in the application code.

From our data we can see that it is 9 times more frequent to
have the permission already asked when a new API is added. We
also found out that most of the newly added APIs (88%) related to
dangerous permissions are added in libraries.

5 RELATED WORK
There are already multiple publications regarding the evolution of
Android applications. Wei et al. [28] focused on third-party and pre-
installed apps, analyzing the patterns that emerged in the evolution
of permissions, and reporting a trend of apps becoming overprivi-
leged and requesting more permissions over time. Krutz et al. [17]
created a dataset of 4416 android releases, enhanced with infor
mation extracted using diferent static analysis tools. Taylor and
Martinovic [26] presented a very broad study performed on over
1,6M applications: they took quarterly snapshots of the Google

Play Store over a one year period and analyzed the evolution of
dangerous permissions. With respect to the aforementioned papers,
our study proposes a wider approach to the evolution of Android
apps, as we do not focus only on the changes in permissions.

Ren et al. [24] analyzed the network t rafc generated by 7665
releases belonging to 512 apps, and identifed several trends such as
slow https adoption, increase in collecting of personally identifable
information, and third parties being able to link user location and
activity across diferent applications. With respect to our work, Ren
et al. have a more in-depth dynamic analysis focusing on network
trafc, while they do not consider any static analysis of the app code.
Moreover, they analyzed roughly half of the releases we considered.

Calciati and Gorla [10] performed a study on over 14,000 applica
tions, focusing on the evolution of permission requests. From their
study it emerged that applications tend to add permissions over
time, that many newly requested permissions are initially not used
by the application code, and that when an applications removes a
permission request it does not necessarily imply the removal of the
corresponding functionality.

Hecht at al [16] presented PAPRIKA, a tool based on Soot and its
Dexpler module to monitors the evolution of mobile apps quality
based on general object-oriented and Android-specifc anti-patterns.
They analyzed a dataset of 106 applications with 3,568 releases, but
were unable to identify general evolution trends.

Stevens et al. [25] analyzed permission usage and correlated it
with StackOverfow questions regarding them, reporting that the
likelihood of misusing a permission decreases with the popularity
of the permission.

Zhang et al. [29] examined the applicability of Lehman’s laws of
software evolution on mobile apps, performing a case study on two
applications. They focused on three laws, fnding similar trends
between mobile and desktop apps for two of them, while they could
not conclude whether the third one holds true.

Book et al. [9] investigated Android ad libraries’ change in behav
ior over time by investigating 114,000 apps, extracting ad libraries
and checking which permissions they try to access, based on the
APIs they invoke. In their study the authors found out that the
use of most permissions increased, and that more libraries use
permissions that can pose privacy and security issues to users.

Derr et al. [12] conducted a study on libraries’ updatability on
over 1,2M apps, showing that 85.6% of the libraries could be updated
without any code modifcation, and that 97.8% of libraries with a
known security vulnerability could be fxed through a replacement
of the library with the fxed version.

6 LIMITATIONS AND THREATS TO VALIDITY
Cartographer inherits all the limitations from the tools that it in
cludes in its tool chain.

The limitations of FlowDroid come from the static analysis it im
plements: it does not consider paths involving asynchronous calls,
and it does not trace inter-component fows. We could overcome
those issues by integrating IC3 [22] into Cartographer. Moreover,
FlowDroid is not sound, since it does not deal with refection nor
with native code.

Obfuscation plays an important role both in library analysis and
APK content analysis. If the code is obfuscated it is not possible to

directly compare code and resource names, so the layout analysis
would report a big change between releases even when changes are
actually minor. Moreover, if the code is obfuscated and LibRadar
cannot identify a library, we cannot identify it with our analysis
either.

All modules that implement static analyses only focus on Dalvik
bytecode and ignore native code. This causes again unsoundness.

Cartographer sufers from limitations due to dynamic analysis
too. It cannot fully explore applications, as Monkey cannot pro
duce all the necessary inputs [11]. Cartographer can only observe
behavior triggered by used events, and misses whatever might be
triggered by environment factors, for example by timing.

When we aim to identify libraries using package name heuris
tics to overcome the limitations of LibRadar, we might incorrectly
consider some application code as library code.

Last but not least, we may in general have missed relevant infor
mation, since sometimes the tools we use might crash on specifc
APKs.

7 CONCLUSIONS
In this paper we presented Cartographer, a ready-to-use framework
to analyze the evolution of Android applications. Cartographer ex
tracts and visualizes various information from APKs, and combines
them to create a report on the evolution of analyzed apps.

The empirical study we conducted over 14,880 APKs using Car
tographer allows us to report interesting evolutionary trends: we
discovered that apps tend to add more data fows over time, even
if the rate of growth is quite low and most data fows only last for
a few releases. Another key fnding is that for most of the added
data fows which have sources protected by dangerous permissions,
the application had already the permission requested in a previous
version. We also found out that when developers add APIs that re
quire a dangerous permission, most of the times the permission was
already requested in a previous version. This can make it hard for
users to notice changes in the app behavior, especially because the
changes that are easier for users to spot are the ones in permissions
and layout.

FlowDroid is able to identify data leaks within one component,
and does not support inter-component communication analysis. In
the future we plan to include the IC3 tool [22] in our framework
to supply FlowDroid with the information about inter-component
links. This would allow us to identify the information passed through
intents, increasing the precision of Cartographer.

Finally, it would be benefcial to extend our tool with the analysis
of the behavior of an application with respect to its description,
relying on existing work done in the area [15, 20].

The code of Cartographer is open source and available at:

https://github.com/gorla/appmining

ACKNOWLEDGMENTS
This work was supported by the EU FP7-PEOPLE-COFUND project
AMAROUT II (n. 291803), by the Spanish project DEDETIS, and
by the Madrid Regional project N-Greens Software (n. S2013/ICE-
2731).

REFERENCES
[1] K. Allix, T. F. Bissyandé, Q. Jérome, J. Klein, R. State, and Y. L. Traon. Empirical

assessment of machine learning-based malware detectors for android - measuring
the gap between in-the-lab and in-the-wild validation scenarios. Journal of
Empirical Software Engineering, 21(1):183–211, 2016.

[2] K. Allix, T. F. Bissyandé, J. Klein, and Y. Le Traon. AndroZoo: Collecting millions
of android apps for the research community. In MSR 2016: 13th Working Conference
on Mining Software Repositories, pages 468–471, Austin, TX, USA, May 2016. ACM.

[3] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein, Y. Le Traon, D. Octeau,
and P. McDaniel. FlowDroid: Precise context, fow, feld, object-sensitive and
lifecycle-aware taint analysis for Android apps. In PLDI 2014: Proceedings of the
ACM SIGPLAN 2014 Conference on Programming Language Design and Implemen
tation, pages 259–269, Edinburgh, UK, June 2014.

[4] K. W. Y. Au, Y. F. Zhou, Z. Huang, and D. Lie. PScout: analyzing the Android
permission specifcation. In CCS 2012: Proceedings of the 19th ACM Conference
on Computer and Communications Security, pages 217–228, Raleigh, NC, USA,
October 2012.

[5] V. Avdiienko, K. Kuznetsov, P. Calciati, J. C. C. Román, A. Gorla, and A. Zeller.
CALAPPA: a toolchain for mining android applications. In WAMA 2016: Pro
ceedings of the 1st International Workshop on App Market Analytics, pages 22–25,
Seattle, WA, USA, November 2016. ACM.

[6] M. Backes, S. Bugiel, and E. Derr. Reliable third-party library detection in an
droid and its security applications. In CCS 2016: Proceedings of the 23rd ACM
Conference on Computer and Communications Security, pages 356–367, Vienna,
Austria, October 2016. ACM.

[7] M. Backes, S. Bugiel, E. Derr, P. McDaniel, D. Octeau, and S. Weisgerber. On
demystifying the android application framework: Re-visiting android permission
specifcation analysis. In USENIX Security: 25th USENIX Security Symposium,
pages 1101–1118, Austin, TX, USA, August 2016. USENIX Association.

[8] D. Bogdanas. Dperm: Assisting the migration of android apps to runtime permis
sions. CoRR, abs/1706.05042, 2017.

[9] T. Book, A. Pridgen, and D. S. Wallach. Longitudinal analysis of android ad
library permissions. CoRR, abs/1303.0857, 2013.

[10] P. Calciati and A. Gorla. How do apps evolve in their permission requests? a
preliminary study. In MSR 2017: 14th International Conference on Mining Software
Repositories, pages 37–41, Buenos Aires, Argentina, May 2017. IEEE Computer
Society.

[11] S. R. Choudhary, A. Gorla, and A. Orso. Automated test input generation for an
droid: Are we there yet? In ASE 2015: Proceedings of the 30th Annual International
Conference on Automated Software Engineering, pages 429–440, Lincoln, NE, USA,
November 2015. IEEE Computer Society.

[12] E. Derr, S. Bugiel, S. Fahl, Y. Acar, and M. Backes. Keep me updated: An empirical
study of third-party library updatability on android. In CCS 2017: Proceedings
of the 24th ACM Conference on Computer and Communications Security, pages
2187–2200, Dallas, TX, USA, October 2017.

[13] A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner. Android permissions
demystifed. In CCS 2011: Proceedings of the 18th ACM Conference on Computer
and Communications Security, pages 627–638, Chicago, IL, USA, October 2011.

[14] M. I. Gordon,D. Kim, J. Perkins, L.Gilham, N. Nguyen, and M. Rinard. Information-
fow analysis of Android applications in DroidSafe. In NDSS 2015: 21st Annual
Symposium on Network and Distributed System Security, San Diego, CA, USA,
February 2015.

[15] A. Gorla, I. Tavecchia, F. Gross, and A. Zeller. Checking app behavior against
app descriptions. In ICSE 2014: Proceedings of the 36th International Conference
on Software Engineering, pages 1025–1035, Hyderabad, India, June 2014.

[16] G. Hecht, O. Benomar, R. Rouvoy, N. Moha, and L. Duchien. Tracking the software
quality of android applications along their evolution (t). In ASE 2015: Proceedings

of the 30th Annual International Conference on Automated Software Engineering,
pages 236–247, Washington, DC, USA, November 2015. IEEE Computer Society.

[17] D. E. Krutz, M. Mirakhorli, S. A. Malachowsky, A. Ruiz, J. Peterson, A. Filipski,
and J. Smith. A dataset of open-source android applications. In MSR 2015: 12th
Working Conference on Mining Software Repositories, pages 522–525, Florence,
Italy, May 2015. IEEE Press.

[18] M. Li, W. Wang, P. Wang, S. Wang, D. Wu, J. Liu, R. Xue, and W. Huo. Libd:
Scalable and precise third-party library detection in android markets. In ICSE
2017: Proceedings of the 39th International Conference on Software Engineering,
pages 335–346, Buenos Aires, Argentina, May 2017. IEEE Press.

[19] Z. Ma, H. Wang, Y. Guo, and X. Chen. Libradar: Fast and accurate detection
of third-party libraries in android apps. In ICSE 2016: Proceedings of the 38th
International Conference on Software Engineering, pages 653–656, Austin, TX,
USA, May 2016. ACM.

[20] L. Moreno, G. Bavota, M. D. Penta, R. Oliveto, A. Marcus, and G. Canfora. ARENA:
An approach for the automated generation of release notes. IEEESE, 43(2):106–127,
February 2017.

[21] Y. Y. Ng, H. Zhou, Z. Ji, H. Luo, and Y. Dong. Which android app store can be
trusted in china? In COMPSAC 2014: Proceedings of thehe 38th Annual International
Computers, Software & Applications Conference, pages 509–518, Våsterås, Sweden,
July 2014. IEEE Computer Society.

[22] D. Octeau, D. Luchaup, M. Dering, S. Jha, and P. McDaniel. Composite constant
propagation: Application to Android inter-component communication analy
sis. In ICSE 2015: Proceedings of the 37th International Conference on Software
Engineering, pages 77–88, Florence, Italy, May 2015.

[23] M. Rapoport, P. Suter, E. Wittern, O. Lhoták, and J. Dolby. Who you gonna call?:
analyzing web requests in android applications. In MSR 2017: 14th International
Conference on Mining Software Repositories, pages 80–90, Buenos Aires, Argentina,
May 2017.

[24] J. Ren, M. Lindorfer, D. J. Dubois, A. Rao, D. Chofnes, and N. Vallina-Rodriguez.
Bug fxes, improvements, ... and privacy leaks. In NDSS 2018: 24th Annual Sympo
sium on Network and Distributed System Security, San Diego, CA, USA, February
2018.

[25] R. Stevens, J. Ganz, V. Filkov, P. Devanbu, and H. Chen. Asking for (and about)
permissions used by android apps. In MSR 2013: 10th Working Conference on
Mining Software Repositories, pages 31–40, San Francisco, CA, USA, May 2013.
IEEE Press.

[26] V. F. Taylor and I. Martinovic. To update or not to update: Insights from a two-
year study of android app evolution. In ASIACCS 2017: Proceedings of the ACM
Asia Conference on Computer and Communications Security, pages 45–57, Abu
Dhabi, UAE, April 2017. ACM.

[27] Vallée-Rai, Raja and Co, Phong and Gagnon, Etienne and Hendren, Laurie and
Lam, Patrick and Sundaresan, Vijay. Soot – a Java Bytecode Optimization Frame
work. In CASCON 1999: Proceedings of the 1999 Conference of the Centre for
Advanced Studies on Collaborative Research, pages 13–23, Mississauga, Ontario,
Canada, Nov 1999.

[28] X. Wei, L. Gomez, I. Neamtiu, and M. Faloutsos. Permission evolution in the
android ecosystem. In ACSAC 2012: Proceedings of the 28th Annual Computer
Security Applications Conference, pages 31–40, Orlando, FL, USA, December 2012.
ACM.

[29] J. Zhang, S. Sagar, and E. Shihab. The evolution of mobile apps: An exploratory
study. In DeMobile 2013: 1st international Workshop on Software Development
Lifecycle for Mobile, pages 1–8, Saint Petersburg, Russia, August 2013. ACM.

[30] Y. Zhou, Z. Wang, W. Zhou, and X. Jiang. Hey, you, get of of my market: Detecting
malicious apps in ofcial and alternative Android markets. In NDSS 2012: 18th
Annual Symposium on Network and Distributed System Security, San Diego, CA,
USA, February 2012.

